
EEEN203
Circuit Analysis

Systems Analysis using the Laplace Transform

Christopher Hollitt

May 10, 2024
Revision 98

EEEN203, Circuit Analysis – Systems Analysis using the Laplace Transform 2024 1/37



Impulse Response to General Response

If we know how a system responds to an impulse, then (in principle) we
could work out how it responds to any input. We could divide the input
signal into an infinitely fine set of “samples” and then let every sample set
off an impulse response. Since the system is linear, we could find the
overall system response by adding together all of these impulse responses.
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Sampling the input
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Impulse Responses
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Convolution
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Convolution

The operation we have just performed, Convolution, occurs frequently and
is one of the most important ideas in engineering, particularly electronic
engineering. You will meet it again in many places.

It is perhaps most easily understood graphically, but we can define it
mathematically as

f(t) ∗ g(t) :=
∫ ∞

−∞
f(τ)g(t− τ) dτ

Note that ∗ is the symbol for convolution, not multiplication! (That said,
you will also somtimes see ⋆ used to denote convolution.)
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Convolution and the Laplace Transform

Despite its importance, we try to avoid calculating convolution integrals.
Instead, we rather use the Laplace (or Fourier) transforms.

We will not prove it here, but the Laplace transform turns convolution in
the time domain into multiplication in the s-domain.

L{f(t) ∗ g(t)} = L{f(t)}L {g(t)}

or
f(t) ∗ g(t) ⇐⇒ F (s)G(s)

We use the reverse property less often, but for completeness,

f(t)g(t) ⇐⇒ 1
2πjF (s) ∗G(s)
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Convolution and the Laplace Transform

We have already seen this property in action several times, though not
drawn attention to it. In particular, it is what makes transfer functions a
useful idea.

Vout(s) = G(s)Vin(s)

is, in general, easier to deal with than

vout(t) = g(t) ∗ vin(t)
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Combining Systems

Transfer functions provide a convenient abstraction of the dynamics of a
system. If we know the transfer function of a system we no longer need to
worry about its internal mechanisms.

Transfer functions can be manipulated and combined as “objects” to build
more complex systems. Typically we call these objects blocks, each of
which has a transfer function.

Some questions arise:

• How do we combine transfer functions?

• What does this combination do to the modes (poles) of the systems?
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Blocks in series

Connecting blocks in series is very common; we do something to a signal
and then take the output and perform a second action.

G1(s) G2(s)

Y (s)

X(s) Z(s)

We can combine the transfer functions of the two blocks. By definition we
have Y (s)

X(s) = G1(s) and
Z(s)
Y (s) = G2(s). Therefore

Z(s) = G2(s)Y (s)

= G2(s)G1(s)X(s)

=⇒ Z(s)

X(s)
= G2(s)G1(s)

The transfer function of subsystems placed in series is the product of the
subsystem transfer functions. This treatment can obviously be extended to
greater numbers of successive stages.
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Poles of blocks in series

We would like to know what the modes of a series system look like (or
equivalently we want to know the pole locations). Let

G1(s) =
N1(s)

(s+a1)(s+a2)···(s+an)
and G2(s) =

N2(s)
(s+b1)(s+b2)···(s+bm) for

ai, bi ∈ C and Ni(s) some polynomials.

The product of these yields

G(s) =
N1(s)N2(s)

(s+ a1)(s+ a2) · · · (s+ an)(s+ b1)(s+ b2) · · · (s+ bm)
,

so the poles of G(s) are just the combination of the poles of its
constituent parts. Placing two blocks in series does not alter the poles or
the modes of the subsystems.

The numerator of the combined system is also the product of the
subsystem numerators, so the zeros do not change either.
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Loading

The previous analysis assumes that the transfer function of a block does
not change when we connect another block to its output. We need to be
careful in practice, because sometimes this is not true.

G2(s)

Y (s)
X(s) Z(s)

G1(s)

R1 R2

C1 C2

If G2(s) were not present, then G1(s) =
Y (s)
X(s) =

ZC1
R1+ZC1

. However, when

we connect the second block having G2(s), then it loads G1(s). In this

case, G1(s) =
Y (s)
X(s) =

ZC1∥(R2+ZC2)

R1+
(
ZC1∥(R2+ZC2)

) .
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Buffering

Often we do not have complete control over the subsystems with which we
are working. For example, we might not be able to choose the input and
output impedances of a circuit.

One method for overcoming the loading problem is to ensure that your
system has buffering between the various subsystems. For example, it is
very common to include op-amp buffers (amplifiers with unity gain)
between stages to reduce their interaction.

Buffering often makes systems “work better”, but also makes it easier to
design and analyse them.
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Blocks in parallel

We also might want to combine blocks in parallel. That is, two blocks
might have the same inputs and outputs.

G1(s)

G2(s)

Y (s)R(s)

In this case the transfer function is simply the sum of the transfer
functions of the two (or more) subsystems.

Y (s)

R(s)
= G1(s) +G2(s)
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Poles and modes of blocks in parallel

Let G1(s) =
N1(s)

D1(s)
and G2(s) =

N2(s)

D2(s)
. Let’s find an expression G(s) for

the transfer function of two combined in parallel.

G(s) =
N1(s)

D1(s)
+

N2(s)

D2(s)

=
N1(s)D2(s) +N2(s)D1(s)

D1(s)D2(s)

As in the case of series blocks, we again see that the denominator is the
product of the subsystem denominators. Consequently a parallel
combination will again show a combination of modes arising from the two
subsystems.

The parallel combination leads to a more complicated numerator for the
transfer function, which can produce different zeros and will typically
change the amplitudes of the modes significantly.

EEEN203, Circuit Analysis – Systems Analysis using the Laplace Transform 2024 15/37



Feedback

In a feedback configuration we
sample some of the output of the
block with transfer function G(s)
and feed it back to the input.

G(s)

H(s)

Y (s)R(s)

U(s)

Y (s) = G(s)U(s)

= G(s)
[
R(s)−H(s)Y (s)

]
= G(s)R(s)−G(s)H(s)Y (s)[

1 +G(s)H(s)
]
Y (s) = G(s)R(s)

Y (s) =
G(s)

1 +G(s)H(s)
R(s)

=⇒ T (s) :=
Y (s)

R(s)
=

G(s)

1 +G(s)H(s)

EEEN203, Circuit Analysis – Systems Analysis using the Laplace Transform 2024 16/37



Poles in feedback systems

T (s) =
G(s)

1 +G(s)H(s)

We call T (s) the closed loop transfer function for the system, and G(s)
the open loop response.

T (s) is more interesting that the transfer functions produced by the other
block combinations, because the poles of T (s) need not be the same as
those of G(s) or H(s). If we are given some system with transfer function
G(s) we often design an appropriate H(s) to improve the pole location
(and modes).

Feedback is one of the fundamental tools in the electronic engineering
toolbox. We will see its power repeatedly over coming courses.
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Feedback Example - The Operational Amplifier

A typical operational amplifier has a transfer function of something like
G(s) = a0

s+3 with a0 ≈ 1× 106. In practice we never use the amplifier
“open loop”, but always enclose it within a feedback network to change
the properties of the overall system.

As an example, consider using a feedback block with transfer function
H(s) = 0.01.

a0
s+3

0.01

Y (s)R(s)
T (s) =

G(s)

1 +G(s)H(s)

=
a0
s+3

1 + 0.01a0
s+3

=
a0

s+ 3 + 0.01a0
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Feedback Example - The Operational Amplifier

Compare the open and closed loop transfer functions.

G(s) =
a0

s+ 3
T (s) =

a0
s+ 3 + 0.01a0

We have moved the pole from s = −3, to s = −3− a0
100 . As a0 is large,

this means that the mode is a lot faster.

Notice also that the gain is reduced. We can use the final value theorem
to find the response to a step. This leads to a final value of a0 for G, but
only 100 for T .
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Feedback Example - Resonant Circuit

Consider an RLC resonant circuit. For a particular example, let’s consider

a circuit that has a transfer function G(s) =
1

s2 + 0.3s+ 1
.

The resulting impulse and frequency responses of the circuit are shown in
the figures.
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Feedback Example - Resonant Circuit

The circuit “rings” quite a lot in the domain which would often be
undesirable. We can also see that it would amplify noise or interference at
around 1 rad/s.

We will see whether we can modify the system response by adding
feedback. That is, we will measure the output of the circuit and apply a
voltage to the system to attempt to counteract the ringing. We will
denote the transfer function of our feedback system as H(s).

Our closed loop now has a transfer function

T (s) =
G(s)

1 +G(s)H(s)

=
1

s2+0.3s+1

1 + 1
s2+0.3s+1

H(s)
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Feedback Example - Resonant Circuit

We will use a particular feedback system that has a transfer function
H(s) = s+ 1.

T (s) =
1

s2+0.3s+1

1 + s+1
s2+0.3s+1

=
1

s2 + 0.3s+ s+ 1 + 1

=
1

s2 + 1.3s+ 2

We can see that the addition of our feedback system has significantly
changed the location of the system poles. In fact, the poles have moved
from approximately −0.15± j in the original system to −0.65± 1.25j.

That is, we have made the response faster and improved the damping
ratio.
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Feedback Example - Resonant Circuit

Let’s compare our closed loop response with the original response. As
expected, the oscillation dies away faster in the time domain. We also see
that the resonance peak is much smaller in the frequency response.
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Modes

Notice that the impulse and the step responses in the previous example
both contain the same mode e−at, which occurs independent of the input.
We have previously seen this happen when comparing the solution of a
DEs with an input and with non-zero initial conditions.

Understanding the modes is one of the most important aspects of studying
any system, as it tells us how the system will respond.

We gain insight into the modes by examining the location of the poles of
the transfer function (is the values of s that make the denominator zero).

For example, the mode e−2t has a corresponding representation in the
s-plane of 1

s+2 . That is, the mode e−2tu(t) corresponds to a pole at
s = −2.

Similarly the mode e−4t sin(3t)u(t) has a Laplace transform of 3
(s+4)2+32

.

This corresponds to a pair of poles at s = −4± j3.
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The s-plane

While we could plot the magnitude of a Laplace transform as a surface in
the s-plane, but normally we are content with just indicating the locations
of the poles and zeros (the locations that make the numerator transfer
function zero).

Poles of a system are indicated by a cross and zeros by a circle.

−20

−15

−10

−5

0 −20

−10

0

10

20

−60

−40

−20

0

20

40

jω

σ

G
a
in

 (
d
B

)

Pole−Zero Map

Real Axis

Im
a

g
 A

x
is

−12 −10 −8 −6 −4 −2 0
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

EEEN203, Circuit Analysis – Systems Analysis using the Laplace Transform 2024 25/37



Some example pole zero maps

G(s) = K 1
s+1 G(s) = K s+2

s+1
G(s) = K 1

(s+1)2+4
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The s-plane

A surface plot of the s-plane should give you some sense of why poles and
zeros have the names that they do...
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Poles on the real axis

Poles on the real axis correspond to simple exponentials. A pole at s = a
corresponds to a mode of eat, Thus poles in the left half plane correspond
to decaying exponentials and poles in the right half plane correspond to
growing exponentials.
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Pole pairs on the imaginary axis

A complex pair of poles on the imaginary axis correspond to a pure
sinusoidal mode. Poles at s = ±jω lead to a mode e±jωt. Thus moving
further away from the origin corresponds to increasing frequency.
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Pole pairs at arbitrary locations

Poles at other locations have an exponential envelope determined by their
real part and a sinusoidal variation determined by their imaginary part.
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Pole pairs at complex locations

If the real part is in the right half of the s-plane then we get a growing
sinusoid.
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Damping ratio

Pairs of complex poles that are located along a line through the origin will
have the same damping ratio. That is, they will have the same decay (or
growth) per cycle of their sinusoidal part.
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Damping ratio

As the angle of that line changes the amount of damping changes. The
damping ratio ζ is defined as the imaginary part of the pole location,
divided by its real part, ie ζ = ω

σ .
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Zeros

The zeros of a transfer function do not affect the modes produced by a
system. However, they do play a part in determining the relative
magnitude of the various modes.

If some pole is close to a zero in the s-plane, then the mode corresponding
to that pole will be small.

When working on problems you will see the zeros come into problems
when you are doing partial fractions expansions. The zeros are not in the
denominator of a transfer function, so have no effect on its factorisation.
However, they do have an affect once you are calculating the residuals.
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Frequency response

Along with the impulse and step responses, a third common experimental
test for a system is the frequency response. This is conducted by driving a
system with a sinusoidal signal at a variety of frequencies. We find that
the system’s response will (usually) depend on the frequency of the applied
signal.

If we drive a linear, time-invariant system with a sinusoidal signal then we
will get a sinusoidal output. In general, the output sinusoid will have a
different amplitude and phase than the input. The relation between the
input and output is known as the frequency response of the system.

That is, if we drive the system with a sinusoidal signal Aejωt and we will
get an output GAejωt+θ. This corresponds to the system having a gain of
G and a phase shift of θ at the frequency ω.
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A frequency response plot

As an example, consider the transfer function G(s) = (s+5)(s+6)
(s2+4s+8)(s2+2s+10)

,

we find the following frequency response:
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Frequency response from the s-plane

The frequency response can be found by examining the s-plane along the
imaginary axis (s = jω, or σ = 0), as shown in the figure.
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