
ENGR101 T1 2024
AVC Project video processing and movement control

Arthur Roberts

School of Engineering and Computer Science
Victoria University of Wellington

Arthur* (ECS) ENGR101 1 / 37

Big picture

Arthur* (ECS) ENGR101 2 / 37

Image processing: Quadrant 2 - curved line

Figure: Robot camera image

Here is the picture from robot
camera.
For the robot to follow the line
motor speed should be adjusted so
that black line is in the middle of
the screen

Arthur* (ECS) ENGR101 3 / 37

Image processing: Quadrant 3 - intersections

Picture from robot camera. Robot
is in Quadrant 3. Select which way
to turn.

Arthur* (ECS) ENGR101 4 / 37

Image processing: Quadrant 4

Picture from robot camera. Robot
is in Quadrant 4. Move towards red
cylinder.

Arthur* (ECS) ENGR101 5 / 37

Image processing: Quadrant 2 - curved line

Figure:

Here is the "whiteness" along
central horizontal line from
previous slide.
Obtained with
get_pixel(row,column,3);
Dip should be in the middle.
Robot should steer in right
direction until dip is in the middle.

Keep in mind that depending upon lightning conditions whole picture
will drift up (more white) and down (less white). Just like Project2.

Arthur* (ECS) ENGR101 6 / 37

Image processing: Quadrant 2

Instead of ..158 169 145 31 32 32...158 169 145

We have ..0 0 0 1 1 1..0 0 0

It is better to make
measurement more clear.
How to decide which pixel is
black and which is white?
Some kind of threshold is
usually involved: value
returned by
get_pixel(row,col,3) is
greater than threshold - pixel
is white (wh[]=1). Otherwise,
for black pixel - (wh[]=0)
Value of threshold better be
adaptable (changing lightning
conditions)

Arthur* (ECS) ENGR101 7 / 37

Q2: Array of pixels

We cleared array line - it contains only 1 and 0. Array of black pixels:
0 0 0 0 0 0 0 0 1 1 0 0 0

1 means that pixel is black - line is there.
And that is all we need to generate error.
Error is 0 if line is in the middle of the screen.
Positive if line is to the left of the centre, negative otherwise.
How?

We have indexes for this array. They go
Indexes:
0 1 2 3 4 5 6 7 8 9 10 11 12

One of them is in the middle:
Indexes:
0 1 2 3 4 5 6 7 8 9 10 11 12

Arthur* (ECS) ENGR101 8 / 37

Lets make new array. Take indexes and subtract middle index from
each of them.
In this case middle is number 6.
Indexes:

0 1 2 3 4 5 6 7 8 9 10 11 12

-6

Result is:
Indexes - middle:

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Arthur* (ECS) ENGR101 9 / 37

Lets take array of white pixels (which contains mostly 0s)
and multiply each element of it with indexes - middle array:

0 0 0 0 0 0 0 0 1 1 0 0 0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6*0 -5*0 -4*0 -3*0 -2*0 -1*0 0*0 1*0 2*1 3*1 4*0 5*0 6*0

Result is
0 0 0 0 0 0 0 0 2 3 0 0 0

And finally lets add all elements of last array together:

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 3 + 0 + 0 + 0 = 5 (1)

What we did is called scalar product in calculus. In C++ it is called
inner_product.

Arthur* (ECS) ENGR101 10 / 37

Repeat for other stripe position

Now two pixels before last to the left are white ones:
0 0 0 0 0 0 0 0 0 0 1 1 0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6*0 -5*0 -4*0 -3*0 -2*0 -1*0 0*0 1*0 2*0 3*0 4*1 5*1 6*0

Adding all elements together:

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 5 + 0 = 9 (2)

Arthur* (ECS) ENGR101 11 / 37

And another...

Now two pixels before last to the left are white ones:
1 1 0 0 0 0 0 0 0 0 0 0 0
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6*1 -5*1 -4*0 -3*0 -2*0 -1*0 0*0 1*0 2*0 3*0 4*0 5*0 6*0

Adding all elements together:

−6 − 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = −11 (3)

Arthur* (ECS) ENGR101 12 / 37

Lets have a look what we got here...

0 0 0 0 0 0 0 0 1 1 0 0 0 Result is 5.
0 0 0 0 0 0 0 0 0 0 1 1 0 Result is 9.
1 1 0 0 0 0 0 0 0 0 0 0 0 Result is -11.

Question:
Array of indexes - middle:
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Array of white pixels:
0 0 0 0 0 1 1 0 0 0 0 0 0

What is result (as calculated by algorithm above)?

Arthur* (ECS) ENGR101 13 / 37

That is all about image processing for Quadrant 2.
We know the error (how far black line is from the centre of the
image, in simplest case) and we want to keep this error to the
minimum.
You can easily program algorithm described above.
Now for control theory.
How to control the motors so that robot movement is fast ans
smooth?

Arthur* (ECS) ENGR101 14 / 37

Library e101: Motor control

Servo motors (continuous rotation):
M1,M4,M5(see board labels)
Motor number (n) - after M
set_motor(n,48); makes motor stop (or go
really slow, adjustable using screw at the
back of the motor)
set_motor(n,30); makes motor go maximum
speed in one direction
set_motor(n,65); makes motor go maximum
speed in opposite direction
hardware_exchange(); should be called to
update state of the hardware

Arthur* (ECS) ENGR101 15 / 37

Left vs Right

One of the motors is left and another is ...

Figure: Left? Right?

From motor perspective: For
robot to move forward motors
should be turning in opposite
directions
If passing value 48 stops the
motors - to move forward one
motor should receive 52 and
another 44

Arthur* (ECS) ENGR101 16 / 37

Control theory

Control theory describes how to program something to simple to
exhibit more complex behaviour...

This requires an error signal.

Arthur* (ECS) ENGR101 17 / 37

Control theory

We want our system in certain state: temperature - 20 degrees,
distance to car ahead of us - 5 m, and a lot of other things.
But it is not.
Difference is called error - and we want to keep it 0
If error is not 0 - we try to adjust
Adjustment is constantly repeated

For example, we want to keep landing plane in the middle of runway...
https://www.youtube.com/watch?v=OoK_dbLDfA0
Or, less drama, we want black line to be in the middle of the screen.

Arthur* (ECS) ENGR101 18 / 37

https://www.youtube.com/watch?v=OoK_dbLDfA0

Diagramatically....

General Control System:

Example of a closed loop system: a system that responds to its
current state.

Arthur* (ECS) ENGR101 19 / 37

Conditional Solution - simple and WRONG

Easy, is it? What is the problem here?
if left half of runway − > full turn right;
if right half of runway − > full turn left;
if middle − > steady as we go.

Would be fine without any inertia in the system. Light as it is, robot will
continue to turn left once it started.
For every complex problem there is an answer that is clear, simple,
and wrong.
H. L. Mencken
Read more at: https://www.brainyquote.com

Arthur* (ECS) ENGR101 20 / 37

Thermostat

Let’s forget about robots and airplanes for a while and consider room
heating .

Figure:

If temperature is lower than
comfortable - turn heater ON
full blast
If temperature is higher than
comfortable - turn heater OFF

Simple!

Arthur* (ECS) ENGR101 21 / 37

What happens?

time

air temperature

20
We want that

-5

A
B C D E

heater ON

A - too cold, turn it ON
A->B - good now, turn it OFF
B - heater is OFF but still hot.
Temperature in the room keep
rising (slower though)
B->C - temperature of the
heater becomes same as air
temperature. Air temperature
stops increasing.
C - Heater is OFF, air
temperature dropping

Arthur* (ECS) ENGR101 22 / 37

What happens?

time

air temperature

20
We want that

-5

A
B C D E

heater ON

C->D - becoming too cold, turn
it ON
D - temperature of heater
rising. But is not high enough
to start heating the air yet.

So temperature never actually is what we want it to be but going
around and around.
Can we improve on that?

Arthur* (ECS) ENGR101 23 / 37

Response is proportional to error

time

air temperature

20
We want that

-5

A
B C D E

heater ON

error

In math form:

heaterSetting = Kp · error (4)

If error is big - heat more.
If error is 0 - switch OFF.

Heater have temperature
setting
We measure how far air
temperature is off desired
value (error) and adjust heater
setting accordingly

I error is big - heater is on
HIGH

I error is small - heater is on
LOW

When time reaches point A->B
heater was in LOW setting for
a while already, so air
temperature in B will not
overshoot that much

Arthur* (ECS) ENGR101 24 / 37

Still it is not quite right...

time

air temperature

20
We want that

-5

A
B C D E

heater ON
time

air temperature

20
We want that

-5

A
B C D E

heater ON

error

It takes longer with proportional. It is understandable - controller is not
pushing to the limit - its slowing down to avoid the overshooting.
Can we speed things up a bit?

Arthur* (ECS) ENGR101 25 / 37

Make it faster...

It would be good to keep Kp
high - faster regulation
But we risk overshooting

Arthur* (ECS) ENGR101 26 / 37

Figure:

Can we start with big
adjustment and then slow
down when system
approaches desired state?
How to implement that?
It is going slow at the start
when error is big. Going slow
means that rate of change is
small.
It is going faster when error is
small and we want to apply the
breaks, slow it down.

Arthur* (ECS) ENGR101 27 / 37

How detect rate of change?

timet0 t1

e0

e1

We measure error at some
moment of time.
We measure error again after dt
seconds.
Rate of change (derivative) is

de
dt

=
e1 − e0

dt
(5)

Controller should remember last measurement to calculate rate of
change.

Arthur* (ECS) ENGR101 28 / 37

We have this equation for the heater:

heaterSetting = Kp · error (6)

Kp is called proportional coefficient.
In more general terms we can write it as:

adjustmnet = Kp · error (7)

If we want to slow system down when it approaches 0 error we can
add differential term:

adjustmnet = Kp · error + Kd · de
dt

(8)

where Kd is derivative term.

Arthur* (ECS) ENGR101 29 / 37

Hm..

All very nice but how it is applicable to the robot?
Robot has to turn to keep black line in the middle of the screen.
If line is not in the middle of the screen - there is an error.

Values of error you choose can be different.
How to turn?

Arthur* (ECS) ENGR101 30 / 37

Speed difference proportional to error

Declare unsigned char v_gol and v_gor - speed of left and right
motors if robot is to go forward
Declare unsigned char dv - difference in speed of left and right
motors
Now:
Speed of right motor: vr = v_gor + dv (set_motor(..,v_l))
Speed of left motor: vl = v_gol + dv (set_motor(..,v_r))
dv is proportional to error (scaling, overflow, type conversions!!!).
Symbolically, dv = Kp · error + Kd · error

dt

Left, right, forward and backward are confusing things - they
change when you connect wires differently.

Arthur* (ECS) ENGR101 31 / 37

Demo videos

Bigger Kp results in robot reacting more (turning further) to same error.
Eventually it becomes hysterical.
So answer is - choose right value of Kp and it works.

Arthur* (ECS) ENGR101 32 / 37

Have to keep trying...

Set Kp and Kd both to 0. Robot
should go straight(ish - motors are
not identical)
Increase Kp until robot follows the line
- including curved parts.
Increase Kp until robot starts
swinging but still follows the line
Start changing Kd until movement is
smooth

Arthur* (ECS) ENGR101 33 / 37

Open the gate!

There are 3 functions in E101 library you can use.

Listing 1: network functions
int connect_to_server(char server_addr[15],int port);
int send_to_server(char message[24]);
int receive_from_server(char message[24]);

It is about moving around arrays of chars and waiting for the server.

Arthur* (ECS) ENGR101 34 / 37

Connection

To send information to another computer we have to find it first. We do
it by IP address.

int connect_to_server(char
server_addr[15],int port);
We find computer by IP
address
Port specifies which program
should be used to process the
data
22(Filezilla) - file transfer
protocol, 80 - HTTP (webpage)
To connect to gate-opening
server, use port 1024

Arthur* (ECS) ENGR101 35 / 37

Client - server
Two programs exchanging messages.

Arthur* (ECS) ENGR101 36 / 37

Questions?

Arthur* (ECS) ENGR101 37 / 37

