ENGR101 T1 2024

Cleaner C++ for big programs

Arthur Roberts

School of Engineering and Computer Science
Victoria University of Wellington

Arthur* (ECS)

ENGR101

Today

We will touch a bit on some practical C++ tricks to make code shorter.
C++ keeps changing and in last 10 years it moved very far from what
we used so far.

We will talk about some developments from 90s:

@ Containers, Standard Template Library, STL
@ STL functions
@ Functional approach

Arthur* (ECS) ENGR101 2/29

Reminder: arrays in memory, pointers

array a

- =

> 4 bytes

\

int* a = new int[n];

@ ais declared as a pointer(memory address) - type int* a

@ If we print it we get number of memory cell/address
(0x5635e7c3ae70)

@ If we do a=a+1 pointer (i.e. address) will be incremented by size
of each element in the array (4 if size of each element is 4 - int).

@ *(a+1) gives value (*) at address (a+1)
file a0.cpp

Arthur* (ECS) ENGR101 3/29

Reminder: Vectors

Once program reserved memory (new int[n]), its size can not be
changed. Can be bad thing - Project 1 had to read file twice to
determine how many notes are there.

There is more flexible alternative to the array - vector. To use vectors:

@ Include vector library: #include <vector>
@ Declare vector of size 0: std::vector<int> a;
@ Declare empty vector of some size: std::vector<int> a(5);

Arthur* (ECS) ENGR101 4/29

What you can do with vectors?

@ add elements to the end of it - a.push_back(new_element)
@ remove all elements from it - v.clear()

@ get one element at position i - v.at() or v[]

@ get the size of it - a.size()

@ remove one elements at certain position - v.erase(v.begin()+3)
(more on begin() function shortly)

@ Does not check for vector size when accessing element (still
unsafe)

file vO

Arthur* (ECS) ENGR101 5/29

Containers

You can see some similarity between array and vector. They both
belong to same class - called container.

Often you have to do similar things for the container. There are many
other containers.

@ set
@ map
o list
@ queu
@ etc ...

STL algorithms work for all containers no matter what type of the
element it contains.

Arthur* (ECS) ENGR101 6/29

Standard Template Library

What is motivation for STL?

We have to do code same algorithms again and again: find_max() for
doubles, the another one for int, another for pixels, then another one
for strings.

We do not want to give up types, because types make programming
much safer, but we do not want to have many versions of same code
either.

STL is made of:

@ containers
@ iterators
@ algorithms
Algorithms can be applied to any type.

Arthur* (ECS) ENGR101 7/29

STL: lterator - replacement fot [i]

Iterator is a generalization of a pointer (memory address).

a.begin() a.end()
/ vector a (container) /
.t 1+ f+ 1 f 1 1 |
B position - f
iterator - acts like a pointer

Figure: Iterator

Simpler access to container element - use star (*) in front of the
iterator.

Arthur* (ECS) ENGR101

8/29

STL: How to use an iterator?

Listing 1: iterator

// includes
int main() {
// Declaring a vector
vector<int> v = { 1, 2, 3,4,5,3,2,1 };
// Declaring an iterator — will point to the element of vector of ints
vector<int >::iterator i;
cout <<std::endl<<"+(v.begin()+3)="<< =(v.begin() + 3);
// Accessing the elements using iterators
for (i = v.begin(); i != v.end(); ++i) {
cout << *i << "_";
}

—

}

Notice * - used when we need value in memory which iterator/pointer
is pointing to. Why such complication? Container cam contain
variables of any type, so using address makes sense.

iterator

Arthur* (ECS) ENGR101 9/29

STL: Algorithms

There are many algorithms in STL. We will go through some which

can be useful for Project 3.

a.begin() a.end()

input: container

C T T T T T 1

output: container or one element

Figure:

@ There is an input
container

@ Function f() is applied
to the elements of the
input container

@ Result goes into
another output
container or it can be
single value

Short examples as well as Project 2 done this way.

Arthur* (ECS) ENGR101

10/29

STL: Algorithms, for_each, example

Example of the algorithm usage:
Apply function to each element of the container.

Listing 2: for_each

#include <vector>
#include <iostreams>
#include <algorithm>

void print_double (double ii){ std::cout<<ii<<"_";}

int main (){
std ::vector<double> a = {0, 0.1
std :: for_each(a.begin() ,a. d(), _
}

v3_for_each

Arthur* (ECS) ENGR101

11/29

for_each: Function as an argument for another
function

a array a a+n
n

- -

T T T T T T T T T
Ve

f Apply function f to each element of a,
0 starting from first to last

Figure: Function applied to all elements of the array

Listing 3: Caption

std::for_each(a,a+n,print_double);

That is the pattern common for STL - function print_double is passed

to another function - for_each here.

Arthur* (ECS) ENGR101

12/29

for_each also works for vectors
For vectors we can use begin() and end() - less things to worry about.
a.begin() a.end()

/ vector a /

C T T T T T T T T T
W

f()

Apply function f to each element of a,
starting from first to last

Listing 4: for_each for vectors
void print_int (int ii) {
std: :cout<<ii<<"_";
}
// ...
std: :vector<int> a;
std: :for_each(a.begin(),a.end(),print_int);

Arthur* (ECS) ENGR101 13/29

for_each: modify vector in-place

a.begin() a.end()

/ vector a /
I

I
il Ti+1 i is taken from
vector
modified i is

f(int& i) {i=i+1;} written back

Listing 5: argument by reference

void add_one(int& ii){ ii = ii+1;}
/]
std ::for_each(a.begin(), a.end(), add_one);

Arthur* (ECS) ENGR101

14/29

for_each: modify vector in-place

Can for_each() be used to modify the vector in place? Pass argument

by reference.

Listing 6: Modify in-place

#include <vector>
#include <iostreams>
#include <algorithm>

void print_double (double ii){ std::cout<<ii<<"_";}

void add_one(double& ii){ ii=ii+1;}

int main (){
std :: vector<double> a = {0.0, 0.1,0.2,0.3,0.4,0.5};
std :: for_each(a.begin(),a.end(), print_double);
std ::cout<<std ::endl;
std :: for_each(a.begin(),a.end(),add_one);
std :: for_each(a.begin(),a.end (), print_double);

}

v3_for_each_mod.cpp

Arthur®

(ECS) ENGR101 15/29

Algorithms: count specific elements in array/vector

Listing 7: Counting number of elements with specific value

#include <vector>
#include <iostreams>
#include <algorithm>

void print_double (double ii){ std::cout<<ii<<"_";}
int main(){

std ::vector<double> a;

a.push_back(0); a.push_back(1);
a.push_back(0); a.push_back(0);
a.push_back(1); a.push_back(1)
std ::for_each(a.begin(),a.end()
std ::cout<<std ::endl;

std ::cout<<std ::count(a.begin(), a.end(), 1.0);

,print_double);

}

v3_count

Arthur* (ECS) ENGR101

16/29

count specific elements in array/vector

a.begin() vector a a.end()

R R tad S s et t
l+1 i+1 l +1 b=1.0

Listing 8: count

std: :cout<<std::count (a.begin(), a.end(), b);

Counts number of elements im a value of which equals b

Arthur* (ECS) ENGR101 17/29

More general version of count: using custom condition
of what to count

Listing 9: Counting elements which satisfy some criteria

#include <vector>
#include <iostreams>
#include <algorithm>

bool gre(double b){return (b>1.0) ;}
void print_double (double ii){ std::cout<<ii<<"_";}

int main (){
std ::vector<double> a = {0.0, 10.0, 20.0 , 0.0 ,3.0};
std :: for_each(a.begin(), a.end(), print_double);
std ::cout<<std ::endl;
std ::cout<<std :: count_if(a.begin(), a.end(), gre);

}

Counts number of elements for which function pos() return true.
v3_count_if

Arthur* (ECS) ENGR101 18/29

Transform one array/vector into another

Listing 10: transform one vector into another

#include <vector>
#include <iostreams>
#include <algorithm>

void print_double (double ii){ std::cout<<ii<<"_";}
double square(double x){return x=x;}
int main (){

std ::vector<double> a;

a.push_back(0); a.push_back(0.1);

a.push_back(0.2); a.push_back(0.3);
a.push_back(0.4); a.push_back(0.5);

std :: vector<double> b(a.size ());

std ::transform (a.begin(), a.end(), b.begin(),square);
std :: for_each(b.begin() ,b.end (), print_double);

Arthur* (ECS) ENGR101

19/29

Algorithms: transform one array/vector into another

a.begin() vector a a.end()

L r [- [7 T]
l l l f(double x){ return x*x; }

vector b

Listing 11: Caption

double square (double x) {return xxx;}

/...

std: :transform(a.begin(), a.end(), b.begin(), square);

@ Take each element of a from a.begin() until a.end().
@ Apply function to it.
@ Putresult into b, starting from b.begin().

Arthur* (ECS) ENGR101

20/29

One useful function - accumulate
This function requires numeric library.

Listing 12: accumulate

#include <iostreams> // std::cout
#include <algorithm> // std::find_if
#include <vector> // std::vector

#include <numeric>

int main () {
std ::vector<int> a;
a.push_| back(10
.push_back (1
.push_back (
.push_back (
(
(

Mmoo

.push_back
a.push_back
int result std ::accumulate (a.begin() ,a.end(),0);
std ::cout<<"result_=_"<<result <<std :: endl;

return O;

Arthur* (ECS) ENGR101

21/29

accumulate: adding all elements together

a.begin() a.end()
/ vector a /
1 1 1 1 1 1 [[1|
YooYy v
I;;@-»@—»@—,. >
Figure

Listing 13: accumulate

int result = std::accumulate(a.begin(),a.end(),0);

Arthur* (ECS) ENGR101

22/29

accumulate with custom function

Listing 14: accumulate with custom function

#include <iostreams> // std ::cout
#include <algorithm> // std::find_if
#include <vector> // std::vector

#include <numeric>

int f1(int a,int b){
return axb;

}

int main () {
std ::vector<int> a;
a.push_back(10);

a.push_back(10);
a.push_back(10);
int result = std::accumulate(a.begin(),a.end(),1,f1);
std ::cout<<"result_=_"<<result <<std :: endl;
return O;
}
Arthur* (ECS) ENGR101

23/29

accumulate with custom function

a.begin() a.end()

%// vector a y//

init: jig B g B L -»D—,

c=function(a,b)

Listing 15: Caption

int function(int a, int b) { /* %/ };
// ...

int result = std::accumulate(a.begin(),a.end(),init, function);

Arthur* (ECS) ENGR101 24/29

Find certain element

Listing 16: Caption

#include <iostreams> // std::cout
#include <algorithm> // std::find_if
#include <vector> // std::vector

bool is_odd(int i) { return ((i%2)==1); }

int main () {

std ::vector<int> a;
a.push_back(10); a.push_back(10);
a.push_back(10); a.push_back(25);
a.push_back(40); a.push_back(55);
std ::vector<int >::iterator it=std::find_if (a.begin(), a.end(), is_odd);
std::cout << "The_first_odd_value_is " << =it << ’'\n’;

std ::cout << "_position="<<it—a.begin();

return 0;

Arthur* (ECS) ENGR101 25/29

iota - fill vector

Listing 17: Caption

#include
#include
#include
#include

<vector>
<iostream>
<algorithm >
<numeric>

int main (){

std ::vector<double> a(6);

std ::cout<<"_size="<<a.size()<<std ::endl;
std::iota(a.begin(),a.end(),10.0);

std ::for_each(a.begin(), a.end(), [](double ae) {std::cout<<ae<<"

}

")

There is new thing in this listing: [](double ae) std::cout«ae«" ";
What is that? iota.cpp

Arthur* (ECS) ENGR101

26/29

Functions which are used only once

You can notice that time and again in code above we write functions
which are used only once.

Is it worth it to write separate function?

There is a shortcut for doing this. Instead of defining function explicitly

Listing 18: traditional

bool pos(double a){return a>0.0;}
// ... something
std ::cout<<std ::count_if(a.begin(), a.end(),pos);

you can write

Listing 19: function without name: lambda

// ... something
std ::cout<<std :: count_if (a.begin(),a.end() ,[](double a){return a>0.0;});

This notation [capture](argument){body} is called lambda - function
only used right there where it is defined.

Arthur* (ECS) ENGR101 27/29

Using lambdas - code without lambda

Listing 20: transform without lambdas

#include <vector>
#include <iostream>
#include <algorithm>

void print_double (double ii){ std::cout<<ii<<"_";}
int main(){
std ::vector<double> a;
a.push_back(0); a.push_back(0.1);
a.push_back(0.2); a.push_back(0.3);
a.push_back(0.4); a.push_back(0.5);
std :: for_each(a.begin() ,a.end (), print_double);

Arthur* (ECS) ENGR101

28/29

Using lambdas - code with lambda

Listing 21: lambdas->shorter code

#include <vector>

#include <iostream>

#include <algorithm>

int main (){
std :: vector<double> a;
a.push_back(0); a.push_back(0.1);
a.push_back(0.2); a.push_back(0.3);
a.push_back(0.4); a.push_back(0.5);
std ::for_each(a.begin(),a.end(),

[I(double a_ele){std::cout<<a_ele<<"_";});

1

Code is shorter, everything is local.
What about [capture]?
v2_lambdas.cpp

Arthur* (ECS) ENGR101 29/29

Capture - use variables from outside the lambda

Functions which use begin() and end() can take only one argument.

What if we need more?

Listing 22: Value capture

#include <vector>
#include <iostreams>
#include <algorithm>

int main (){
std :: vector<double> a;
a.push_back(0); a.push_back(1);
a.push_back(0); a.push_back(1);
a.push_back(1); a.push_back(1);
double thr = 0.5;
std ::cout<<std :: count_if(a.begin(),a.end(),
[thr](double ae){return ae>thr;});
}

v3_countif_lambda.cpp

Arthur* (ECS) ENGR101

30/29

More modern C++

If you did the Challenges and looked at cpprefernce, stackoverflow and
likes, you could notice that practically nobody actually writes the C++
code the way we did so far.

C++ keeps changing (C++11, C++17, C++20) and in last 10 years a lot
of new features were added to make it more functional(?)

Two major types or programming languages.

@ Program as a sequence of steps modifying variables

@ Program as a sequence of expressions(functions). Minimum or no
variables. Functions taking another functions as an arguments.

Arthur* (ECS) ENGR101 31/29

Questions?

Arthur* (ECS)

ENGR101

