
ENGR101 T1 2024
Software quality,

testing,
debugging

School of Engineering and Computer Science
Victoria University of Wellington

(ECS) ENGR101 1 / 34

Software Quality

How do we characterize ‘quality’ software?

Simple definition seems to be:
The degree to which a system, component, or process meets
specified requirements.
The degree to which a system, component, or process meets
customer or user needs or expectations.

But there is more to it...

(ECS) ENGR101 2 / 34

At the end of the day it comes down to code

Functionality is only PART of what makes quality software. . .

Also:
Correctness
Efficiency
Fault Tolerant
Maintainable
Secure
User-friendly

(ECS) ENGR101 3 / 34

Correctness

An algorithm or program is correct if it is free from error.
There are several types of errors:

1 Compile-time errors - easiest. Compiler (if there is one) tells you
where error is.

2 Run-time error - can only be detected when program is running.
segmentation fault, division by zero are typical examples

3 Logic errors - program compiles and runs without obvious
problem. But result is wrong.
There are several ways to detect logical errors. Testing is simplest
but not only one.

(ECS) ENGR101 4 / 34

Efficiency

Time behavior: Characterizes response times for a given thruput,
i.e. transaction rate.
Resource behavior: Characterizes resources used, i.e. memory,
cpu, disk and network usage.

Keep in mind that modern compilers work miracles in code
optimization.
Things to watch will be:

If you are running for inside for - try to calculate as little as
possible inside inner one
Do not pass big arrays by value, copying is very slow. Use passing
argument by reference.

AVC: try to avoid passing whole image as an argument to the function.

(ECS) ENGR101 5 / 34

Fault-tolerant

Murphy’s law: If something can go wrong, it will.
Murphy’s Law was born at Edwards Air Force Base in 1949 at North Base. It was named after

Capt. Edward A. Murphy, an engineer working on Air Force Project MX981, (a project) designed

to see how much sudden deceleration a person can stand in a crash.

Smith’s law: Murphy was an optimist.

(ECS) ENGR101 6 / 34

Fault-tolerant

Your input files will be corrupted, network will not respond, variables
will have un-reasonable values when they should not(example later).
Deal with it.
Trust nothing.
AVC: What program does when robot does not see black pixels any
more?

(ECS) ENGR101 7 / 34

Fault-tolerant
You don’t want your program to crash if something is wrong. Recovery
blocks - both in Java and C++

Listing 1: try..catch
inc lude <iostream >
i n t div1 (i n t a , i n t b) {

i f (b == 0) {
throw " Attempted to d i v i d e by zero ! " ;

}
return a / b ;

}

i n t main () {
i n t c ;
t r y {

c = div1 (3000 , 0) ;
} catch (const char * message) {

s td : : cout <<" Except ion caught "<<message<<std : : endl ;
}

s td : : cout <<" c="<<c<<std : : endl ;
}

try_catch0.cpp

(ECS) ENGR101 8 / 34

Maintainable

Your program WILL have to be modified. PERIOD. By somebody else,
may be many years from now..
How to write Maintainable software:

Write short units of code.
Write simple units of code.
Write code once - Duplication of source code should be avoided at
all times, since changes will need to be made in each copy.
Keep your codebase small. A large system is difficult to maintain.
Write clean code: variable names, COMMENTS, indents, etc.

(ECS) ENGR101 9 / 34

Secure

You have whole course on that...

(ECS) ENGR101 10 / 34

User-friendly

Simple
Clean
Intuitive
Reliable

User interface is like a
joke. If you have to
explain it, it is not that
good.
Linux is user-friendly.
Just particular who the
friends are.

Which users?
https://www.youtube.com/watch?v=Ze3hthGRbRo

(ECS) ENGR101 11 / 34

https://www.youtube.com/watch?v=Ze3hthGRbRo

Software failures
Toyota

used Drive-by-wire system.
Car accelerates to maximum speed.
"...has been able to demonstrate how a single bit flip can cause the
driver to lose control of the engine speed in real cars due to this
software malfunction that is not reliably detected by any fail-safe
backup system."
http://www.sddt.com/

(ECS) ENGR101 12 / 34

http://www.sddt.com/

Software failures

The Patriot missile battery at Dhahran had been in operation
for 100 hours, by which time the system’s internal clock had drifted by
one-third of a second. Due to the missile’s speed this was equivalent
to a miss distance of 600 meters.
The radar system had successfully detected the Scud and predicted
where to look for it next. However, the timestamps of the two radar
pulses being compared were converted to floating point differently:
one correctly, the other introducing an error proportionate to the
operation time so far (100 hours) caused by the truncation in a 24-bit
fixed-point register.

(ECS) ENGR101 13 / 34

Software failures

Y2K $400 billion in fixing.
many programs represented four-digit years with only the final two
digits — making the year 2000 indistinguishable from 1900.

2038 problem
The latest time that can be represented in Unix’s signed 32-bit integer
time format is 03:14:07 UTC on Tuesday, 19 January 2038 (231-1 =
2,147,483,647 seconds after 1 January 1970).Times beyond that will
wrap around and be stored internally as a negative number, which
these systems will interpret as having occurred on 13 December 1901
rather than 19 January 2038. This is caused by integer overflow.

(ECS) ENGR101 14 / 34

Software failures
X-ray machine: Therac25

It was involved in at least six accidents between 1985 and 1987, in
which patients were given massive overdoses of radiation.
Previous models had hardware interlocks to prevent such faults, but
the Therac25 had removed them, depending instead on software
checks for safety.

(ECS) ENGR101 15 / 34

Software failures
Mars orbiter 1998

Software that calculated the total impulse produced by thruster firings
produced results in pound-force seconds. The trajectory calculation
software then used these results - expected to be in newton seconds -
to update the predicted position of the spacecraft.

(ECS) ENGR101 16 / 34

Software failures
Eve Online’s game

deployment of the Trinity patch erased the boot.ini file from several
thousand users’ computers, rendering them unable to boot. This was
due to the usage of a legacy system within the game that was also
named boot.ini. As such, the deletion had targeted the wrong directory
instead of the /eve directory

(ECS) ENGR101 17 / 34

Software failures

According to the FAA, there’s a software bug in the 787
Dreamliner that can cause its electrical system to fail and, as a
result, lead to "loss of control" of the plane. 248days == 231 100ths of
a second.

(ECS) ENGR101 18 / 34

So what are we really trying to achieve?

Building software systems . . .
that do the right thing . . .

cost effectively . . .

(ECS) ENGR101 19 / 34

What’s the problem?

Reality!

Good, fast, cheap: Pick any two!
You can have good and fast, but it wont be cheap.
You can have good and cheap, but it wont be fast.
You can have cheap and fast, but it wont be good.

This idea is sometimes called the ‘project triangle’.

(ECS) ENGR101 20 / 34

Topic 2: Producing Quality Software

Documentation
Debugging
Testing

(ECS) ENGR101 21 / 34

Documentation

Trying things is fun. But...
Do not expect your tools to be user-friendly. They are for
professionals and so you should be one.
Trying things takes a loooong time. It is faster to read the manual.

If you’re stuck and you haven’t checked the documentation then:
you’re doing it wrong!

Learn where your system/language documentation is and USE it.
Google and Stackoverflow are your friends, but be VERY wary of
blindly copying and pasting.
Definitive sources are better (man pages, javadocs, etc).

(ECS) ENGR101 22 / 34

Debugging
First computer bug

The term ’bug’ was first used by Grace Hopper on September 9th,
1945 when a real bug, a moth, short-circuited an early computer on
relay number 70 Panel F, of the MARK II Aiken Relay Calculator, in the
Harvard University. The operators of the computer said they had
"debugged" the computer, and ever since then the terms has not
changed.

(ECS) ENGR101 23 / 34

Bugs - debugging

Set breakpoint. Program
stops when this line is
reached.
See values of the variables
(watch)

Demo

(ECS) ENGR101 24 / 34

Debugging

You can use tool called gdb.
https://en.wikibooks.org/wiki/GCC_Debugging/gdb

(ECS) ENGR101 25 / 34

https://en.wikibooks.org/wiki/GCC_Debugging/gdb

Debugging

Pragmatically...Best way to avoid bugs is to act logically

1 Beg/borrow/steal/buy a rubber duck
2 Tell the duck you will explain some code to it
3 Explain to the duck what your code is

supposed to do, line by line.
4 At some point you will tell the duck what you

are doing next and realise that is not actually
what you are doing. The duck will sit there
serenely, happy in the knowledge that it has
helped you on your way.

http://www.rubberduckdebugging.com/

(ECS) ENGR101 26 / 34

http://www.rubberduckdebugging.com/

Testing

We know the specifications - what code should do.
OK, we read all the manuals and are confident that in tools used.
We designed the algorithm.
We wrote the code.
We got rid of some bugs.

Testing is to eliminate bugs we did not know about yet...
1 Define what your system SHOULD and SHOULD NOT do.
2 Creating your system.
3 Checking your system matches what you set out to achieve!
4 Repair the bugs and repeat.

(ECS) ENGR101 27 / 34

Testing: Software Example Answers

Making a method to do division of two numbers.
Does 1/1 = 1?
Does 1/0 return infinity or an error?
Does 2/-1 = -2?
Does program reject inputs that aren’t numbers?
Does program round?
etc

(ECS) ENGR101 28 / 34

Testing: How much?

To be 100 percent sure in our
software we have to test it for
all possible data
Which seems to be
impossible!

(ECS) ENGR101 29 / 34

Testing: Can not give 100 percent guarantee

Testing can show the presence of bugs but not their absence
- Edsger W Dijkstra, (A physicist who became one of the founders of
computer science).

Lubarsky’s Law of Cybernetic
Entomology:
There’s always one more bug.

There are ways to prove that software works (or not) for all possible
combinations of inputs. It is called formal methods. Using logic and
done for life-critical software.

(ECS) ENGR101 30 / 34

There are lots of different testing activities.
Unit Testing: Testing your functions/methods as you write your
code.
Regression testing: maintaining a possibly large set of test cases
that have to passed when ever you make a new release. Old test
cases are run against the new version to make sure that all the old
capabilities still work. Adding more code can break old one.
Integration testing: testing if your software modules fit together.

(ECS) ENGR101 31 / 34

Testing types

Compatibility: Does it work with other software?
Regression: Does it work after updates (or bug fixes)?
Destructive: What happens when we try to break it?
Performance: Does it run fast/responsively
Usability: Can you use it?
Security: Does it prevent (limit) intrusion?
Notice any similarities with the Software Quality measures?

(ECS) ENGR101 32 / 34

Good news!

It’s entirely possible to automate (parts of) testing using tools like
GTest.

Testing is also one of the major software employment areas globally.
It’s growing fast and is DESPERATE for people who can critically and

thoroughly assess systems.

(ECS) ENGR101 33 / 34

Summary

1 The quality of software is important.
2 Testing and Debugging are our best tools.
3 Finding bugs is HARD!

(ECS) ENGR101 34 / 34

