SCHOOL OF MATHEMATICS AND STATISTICS Te Kura Mātai Tatauranga

ENGR 123

1 For each relation on the given set, determine whether it is reflexive, symmetric, antisymmetric and/or transitive.

In each case where the relation doesn't have a property, give a short reason why or an example e.g. it isn't reflexive because ...

- (a) On the set of people, (a, b) ∈ R iff a and b share a parent in common. (4 marks)
 Solution: Reflexive, Symmetric.
 It is not anti-symmetric, being siblings doesn't make you the same.
 It is not transitive, could share different parents.
- (b) On the set of 2×2 matrices, $(a, b) \in R$ iff a and b have different top-left entries (so they differ in row one, column one). (4 marks)

Solution: Symmetric. It is not reflexive, the same matrix will have identical entries everywhere! It is not anti-symmetric, for example I_2 and the zero matrix. It is not transitive, for example I_2 , the zero matrix and I_2 again.

2 Give a direct proof that shows if x is odd, then x^2 is odd. (4 marks)

Solution: Suppose x is odd. Then x = 2k + 1 for some $k \in \mathbb{Z}$. It follows that

$$x^{2} = (2k + 1)^{2}$$

= 4k^{2} + 4k + 1
= 2(2k^{2} + 2k) + 1

So $x^2 = 2m + 1$ (where $m = 2k^2 + 2k$), hence x^2 is odd.

3 For the equivalence relation on $\{0, 1, 2, 3, 4\}$ defined as

$$\{(x, y) : x - y \text{ is a multiple of } 3\}$$

(a) Write it out as a list of ordered pairs

Solution: The relation as a list of ordered pairs is

$$\{(0,0), (0,3), (3,0), (3,3), (1,1), (1,4), (4,1), (4,4), (2,2)\}$$

(b) List the cells in the associated partition. (2 marks) Solution: The cells are $\{0,3\},\{1,4\}$ and $\{2\}$

ENGR 123, 2020

Assignment 3

(2 marks)

4 Let $A = \{1, 2, ..., 12\}$). Draw the Hasse diagram of the divisibility relation on A i.e. (x, y) iff x is a factor of y iff y is a multiple of x. (2 marks)

Solution:

5 Use induction to show that $\frac{n!}{2^n} > 1$ for all $n \ge 4$.

Solution:

<u>Base case (n = 4):</u> $\frac{4!}{2^4} = \frac{24}{16} = \frac{3}{2} > 1$

 $\frac{\text{Induction hypothesis } (n = k):}{\text{Inductive step } (n = k + 1):} \text{ Assume that } \frac{k!}{2^k} > 1 \text{ for some } k \ge 4.$

$$\frac{(k+1)!}{2^{k+1}} = \frac{(k+1)k!}{2 \cdot 2^k} \qquad \text{defns}$$
$$= \frac{k+1}{2} \cdot \frac{k!}{2^k} \qquad \text{algebra}$$
$$> \frac{k+1}{2} \cdot 1 \qquad \qquad \text{IH}$$
$$\ge 1 \qquad \qquad \text{for } k \ge 1$$

which is the desired result!

(6 marks)

6 Consider the following pseudocode:

Algorithm 1: ReverserHelper(L,S)

input: sequences $L = [l_1, ..., l_m]$ and $S = [s_1, ..., s_n]$ 1 if (Length(L) = 0) then 2 \lfloor return S 3 $L' = [l_2, ..., l_m]$ 4 $S' = [l_1, s_1, ..., s_n]$ 5 return ReverserHelper(L', S')

(a) Use induction on m to show that

(4 marks)

 $\texttt{ReverserHelper}([\texttt{l}_1,\ldots,\texttt{l}_{\texttt{m}}],[\texttt{s}_1,\ldots,\texttt{s}_{\texttt{n}}]) = [\texttt{l}_{\texttt{m}},\texttt{l}_{\texttt{m}-1},\ldots,\texttt{l}_1,\texttt{s}_1,\texttt{s}_2,\ldots,\texttt{s}_{\texttt{n}}]$

for any sequences $[\mathtt{l}_1,\ldots,\mathtt{l}_m]$ and $[\mathtt{s}_1,\ldots,\mathtt{s}_n]$

Solution:

By induction on m, the length of the first list.

<u>Base case</u>: If m = 1 then ReverserHelper([l₁], [s₁, ..., s_n])=[l₁, s₁, ..., s_n] (check this yourself using the algorithm!)

Inductive hypothesis: Assume algorithm works for $length(L) \le m$

Inductive step: Check when $L = [l_1, \ldots, l_m, l_{m+1}]$.

$$\begin{split} & \text{ReverserHelper}([\texttt{l}_1,\texttt{l}_2,\ldots,\texttt{l}_m,\texttt{l}_{m+1}],[\texttt{s}_1,\ldots,\texttt{s}_n]) \\ & = \text{ReverserHelper}(\underbrace{[\texttt{l}_2,\ldots,\texttt{l}_m,\texttt{l}_{m+1}]}_{L'},\underbrace{[\texttt{l}_1,\texttt{s}_1,\ldots,\texttt{s}_n]}_{S'}) \end{split}$$

by design of the algorithm, where length(L') = m. By the inductive hypothesis, (in particular since the length of L' is m, it follows that

$$\texttt{ReverserHelper}(\texttt{L}',\texttt{S}') = [\texttt{l}_{\texttt{m}+1},\texttt{l}_{\texttt{m}},\ldots,\texttt{l}_2,\texttt{l}_1,\texttt{s}_1,\ldots,\texttt{s}_n]$$

as required. QED

(b) Explain how to use the previous result to show that if $L = [l_1, \ldots, l_m]$ and

Reverse(L) := ReverseHelper(L,[])

then Reverse(L) returns $[l_m, \ldots, l_1]$.

Solution:

Follows immediately by choosing S = [] to be the empty string.

(2 marks)