
ENGR 301 Project Management
Lecture 12 — Build Management

James Quilty

School of Engineering and Computer Science
Victoria University of Wellington



Introduction

Build management concerns management of the processes for
producing final artefacts from sources.

Has been around since artefacts were built

Manual processes are “default”

Automated processes have become available

Today’s lecture looks at build management with examples using Make.



Manual build processes

Manual build processes are:

Error-prone

Repetitive

Time-consuming

Create toil and the economy of manual processes involves the
“monetisation of toil” (Alan Geer, 2019).



Automated build processes

Automated build processes are:

Consistent

Reproducible

Fast[er than people]



History: Make

Automated software build management was codified in the C era by
Make but there are now many packages:

CMake, SCons, MSBuild, Ant, Maven or Gradle

Very often targeted at specific contexts

“CMake is not a build system itself; it generates another system’s
build files.”

Make is not as context-specific as the other and consequently is still
prevalent. Try searching GitHub for Makefile:
https://bit.ly/3TsKqO1 ; https://bit.ly/3x0rFdn.

https://bit.ly/3TsKqO1
https://bit.ly/3x0rFdn


Introduction: Make

The GNU Autoconf Manual summarises make very well:

“The ubiquity of make means that a makefile is almost the only viable
way to distribute automatic build rules for software, but one quickly
runs into its numerous limitations. Its lack of support for automatic
dependency tracking, recursive builds in subdirectories, reliable
timestamps (e.g., for network file systems), and so on, mean that
developers must painfully (and often incorrectly) reinvent the wheel for
each project. Portability is non-trivial, thanks to the quirks of make on
many systems. On top of all this is the manual labor required to
implement the many standard targets that users have come to expect
(make install, make distclean, make uninstall, etc.). ... Into this mess
steps Automake.”

https://bit.ly/3vjwLky

https://bit.ly/3vjwLky


Make Concepts

Originally motivated by someone forgetting to recompile their source
code to object code after fixing a bug. Make characteristics:

Rule-based system

Internally represented as a directed acyclic graph

Seeks to fulfil rules by following the graph



Makefiles

A simple Makefile contains rules

target ... : prerequisites ...

recipe

...

...

target: usually the name of a file that is generated by a program.
A target can also be the name of an action to carry out, such as
clean (a Phony Target).

prerequisite: a file that is used as input to create the target.
A target often depends on several files.

recipe an action that Make carries out in a shell process.



Makefiles

What Makefiles often contain:

explicit rules

implicit rules

variable definitions

directives

comments



Pitfalls

There are many:

Mixes declarative and imperative language (!)

Tab character indentation by default (!)

Implicit rules (!)

Different “styles” of declarative rules (!)

Cryptic syntax (!)



Remake: An Improved Version of Make

Remake https://bashdb.sourceforge.net/remake is
available via many package managers. It offers a number of helpful
features compared to Make:

additional CLI options

improved error reporting

better tracing

build profiling

debugger

https://bashdb.sourceforge.net/remake


Further Reading

GNU Make Manual
https://bit.ly/4a1TPU0

Managing Projects with GNU Make
https://bit.ly/3PwFVkn

https://www.oreilly.com/openbook/make3/book/

Rules of Makefiles
https://bit.ly/4ajYUXs

https://bit.ly/4a1TPU0
https://bit.ly/3PwFVkn
https://www.oreilly.com/openbook/make3/book/
https://bit.ly/4ajYUXs

