
Continuous Integration

James Quilty

School of Engineering and Computer Science
Victoria University of Wellington



Introduction to Continuous Integration

“Continuous Integration is a software development practice where
members of a team integrate their work frequently, usually each
person integrates at least daily — leading to multiple integrations per
day. Each integration is verified by an automated build (including test)
to detect integration errors as quickly as possible. Many teams find
that this approach leads to significantly reduced integration problems
and allows a team to develop cohesive software more rapidly.”

–Martin Fowler, 2006

https://martinfowler.com/articles/continuousIntegration.html

This lecture: theory & practice with examples in GitLab’s CI pipeline.

https://martinfowler.com/articles/continuousIntegration.html


Introduction to Continuous Integration

“CI/CD is a continuous method of software development, where you
continuously build, test, deploy, and monitor iterative code changes.

“This process is part of a larger workflow:”

https://docs.gitlab.com/ee/ci/introduction/index.html

https://docs.gitlab.com/ee/ci/introduction/index.html


Key Concepts

Continuous Integration is:

a practice;

based on individual contributions;

in the context of a group.

Continuous Integration is not:

a technology;

automation;

sub-atomic contributions.



Case Study

So, a student was working on a really valuable feature:

they made the changes in their working copy;

they built their not-quite-complete work;

they uploaded it to their DR;

the code appeared to be working;

their lab session ended and they left. . .

another team started development on the DR;

they found a blocking bug in the code on the DR;

they wanted the feature but couldn’t find the code in GitLab;

they weren’t able to fix the bug and benefit from the feature. . .

until the first student integrated their work.



Case Study

So, a student was working on a really valuable feature:

they made the changes in their working copy;

they built their not-quite-complete work;

they uploaded it to their DR;

the code appeared to be working;

their lab session ended and they left. . .

another team started development on the DR;

they found a blocking bug in the code on the DR;

they wanted the feature but couldn’t find the code in GitLab;

they weren’t able to fix the bug and benefit from the feature. . .

until the first student integrated their work.



Characteristics of Continuous Integration

Integration and Continuous Integration are characterised by:

sharing work in progress;

contributing partial or incomplete work;

sharing work even when you’re not completely happy with it;

In this way, you make most effective use of the source control
management and project management tools.



Recap: Using git’s workflow Effectively

Guidelines (Lecture 8)

Greatest freedom at the start, least freedom
at the end

Use staging to collect changes for a commit
while working

Local commits are easy to change, both
content and order

Remote is shared and commits should be
changed with caution



Essential Practices

From Continuous Delivery by Jez Humble and David Farley:

1 Don’t Push to a Broken Build;
2 Wait for Commit Tests to Pass before Moving On
3 Always Run All Commit Tests Locally before Committing
4 Never Go Home on a Broken Build
5 Always Be Prepared to Revert to the Previous Revision
6 Time-Box Fixing before Reverting
7 Don’t Comment-out Failing Tests
8 Take Responsibility for Your Breakages
9 Follow Test-Driven Development



GitLab Workflow Example

https://docs.gitlab.com/ee/ci/

https://docs.gitlab.com/ee/ci/


Continuous Integration Automation

GitLab implementation:

Pipelines https://docs.gitlab.com/ee/ci/pipelines

Job Artefacts https://bit.ly/4b163N5

Variables https://docs.gitlab.com/ee/ci/variables/

Caching https://docs.gitlab.com/ee/ci/caching/

GitLab Runner https://docs.gitlab.com/runner/

Container registry https://bit.ly/4b8GKIQ

Let’s take a look at how these are used in the Data Recorder’s CI
pipeline. . .

https://docs.gitlab.com/ee/ci/pipelines
https://bit.ly/4b163N5
https://docs.gitlab.com/ee/ci/variables/
https://docs.gitlab.com/ee/ci/caching/
https://docs.gitlab.com/runner/
https://bit.ly/4b8GKIQ


Example: Data recorder CI

How does the CI pipeline function in the Data Recorder project?
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/
2024/templates/data-recorder

https:
//gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/
templates/data-recorder/-/blob/main/.gitlab-ci.yml

https://gitlab.ecs.vuw.ac.nz/course-work/engr301/
2024/templates/data-recorder/-/pipelines

https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder/-/blob/main/.gitlab-ci.yml
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder/-/blob/main/.gitlab-ci.yml
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder/-/blob/main/.gitlab-ci.yml
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder/-/pipelines
https://gitlab.ecs.vuw.ac.nz/course-work/engr301/2024/templates/data-recorder/-/pipelines


Electronics

Electronics needs continuous integration as much as any other area of
the project!

Branching strategy

Bill of Materials (BOM) management

Automatic generation of schematic and layout PDFs

Automatic generation of files for manufacture



KiBot https://github.com/INTI-CMNB/KiBot

https://github.com/INTI-CMNB/KiBot

