ENGR 301 Project Management
Lecture 8 — git I

James Quilty

School of Engineering and Computer Science
Victoria University of Wellington



Basic git

Today'’s lecture continues our discussion of basic usage of git.
References you may find useful are:

@ Pro Git https://git—-scm.com/book/en/v2

@ Git: Mastering Version Control https://learning.oreilly.
com/library/view/git—-mastering—-version/9781787123205/

@ Version Control (Git)
https://missing.csail.mit.edu/2020/version-control/


https://git-scm.com/book/en/v2
https://learning.oreilly.com/library/view/git-mastering-version/9781787123205/
https://learning.oreilly.com/library/view/git-mastering-version/9781787123205/
https://missing.csail.mit.edu/2020/version-control/

git's Workflow

Basic concepts

Working copy: the files you see and edit
Index: a.k.a. the “staging area”
Local repo: your clone of the remote repo

Remote repo: the Single Source of Truth

Typically centrally served, e.g. GitLab,
GitHub, Bitbucket, etc.

Git workflow

Working copy

git add

1

Index

git commit

1

Local repository

git push

Remote repository




Using git’s workflow Effectively

Guidelines

@ Greatest freedom at the start, least freedom
at the end

@ Use staging to collect changes for a commit
while working

@ Local commits are easy to change, both
content and order

@ Remote is shared and commits should be
changed with caution

Git workflow

Working copy

git add

1

Index

git commit

1

Local repository

git push

Remote repository




Working with the Index (staging)

Basic concepts:

@ Files are untracked until tracked using git add
@ Untrack files with git rm but will also remove from working copy
@ Remove files from staging with git restore —--cached

@ Add changed files with git add and piece-by-piece with
git add —--patch



Finding what’s changed

Two main commands:

@ git status shows what git knows about changes
@ By default, ignored files are not shown by git status

@ git diff shows the changes between the working copy and
staging

@ git diff —--cached shows the changes between staging and
local



Restoring changes

Can restore (undo) changes in the Working Copy and Index (staging
area) [see also GitKraken]:

git restore will undo changes in the Working Copy tree or a
specific file

git restore —--cached will undo changes added to the
staging area, i.e. undo the git add

git reset is an older and far more dangerous command for
undoing changes

git reset flags: ——soft, ~—mixed and —-—hard

git reset will also operate on commits



Committing to Local

The basic command is git commit

@ git commit [—-—-message] [——message]

@ git commit --amend will merge changes in the index with the
most recent commit

@ git commit —--amend —--no-edit will do the same but not
ask for an update to the commit summary/title



Pushing and Pulling

@ git push merges your commits from local to remote

@ git pull —--rebase merges commits from remote to your
working copy

A common situation on pull is to receive an error message like:

$ git pull —rebase
error: cannot pull with rebase: You have unstaged changes.
error: please commit or stash them.

What is “stashing“?



Pushing and Pulling

A common situation on push is to receive an error message like:

S git push
To gitlab.ecs.vuw.ac.nz:Courses/SWEN326/SWEN326.git
' [rejected] 41—-... —> 41-... (fetch first)

error: failed to push some refs to ’'<path-to-repo>’

hint: Updates were rejected because the remote

hint: contains work that you do not have locally.

hint: This 1s usually caused by another repository

hint: pushing to the same ref. You may want to first
hint: i1ntegrate the remote changes (e.g., "git pull ...")
hint: before pushing again. See the ’'Note about

hint: fast-forwards’ 1n ’'glit push ——help’ for details.

Need to pull before pushing. Always use the rebase merge strategy!



Stashing changes

Basic concepits:

@ The stash is a queue, thus: git stash [push] and
git stash pop

@ git stash 1list shows the list of stashes;
select a stash with git stash pop stash@{<number>}

@ Show the contents of a stash with
git stash show [stash@{<number>}]

@ Apply the contents of a stash without removing it with
glt stash apply [stash@{<number>}]

@ QGive stashes better messages with

g1t etach ——mecceage " N



Pushing and Pulling

A common situation when changes have been made “outside” git:

$ git pull —rebase

error: The following untracked working tree files would be overwritten
by merge:

<some files>

Please move or remove them before you merge.

Aborting



git hooks

git hooks execute scripts on specific events.

pre-commit https://pre—commit.com/

“A framework for managing and maintaining multi-language
pre-commit hooks.”

“...we recognised that sharing our pre-commit hooks across
projects is painful.”

@ pre-commit not limited to one hook only :

@ Incorporated in the data-recorder repository I


https://pre-commit.com/

