
ENGR 301 Project Management
Lecture 8 — git II

James Quilty

School of Engineering and Computer Science
Victoria University of Wellington



Basic git

Today’s lecture continues our discussion of basic usage of git.
References you may find useful are:

Pro Git https://git-scm.com/book/en/v2

Git: Mastering Version Control https://learning.oreilly.
com/library/view/git-mastering-version/9781787123205/

Version Control (Git)
https://missing.csail.mit.edu/2020/version-control/

https://git-scm.com/book/en/v2
https://learning.oreilly.com/library/view/git-mastering-version/9781787123205/
https://learning.oreilly.com/library/view/git-mastering-version/9781787123205/
https://missing.csail.mit.edu/2020/version-control/


git’s Workflow

Basic concepts

Working copy: the files you see and edit

Index: a.k.a. the “staging area”

Local repo: your clone of the remote repo

Remote repo: the Single Source of Truth

Typically centrally served, e.g. GitLab,
GitHub, Bitbucket, etc.



Using git’s workflow Effectively

Guidelines

Greatest freedom at the start, least freedom
at the end

Use staging to collect changes for a commit
while working

Local commits are easy to change, both
content and order

Remote is shared and commits should be
changed with caution



Working with the Index (staging)

Basic concepts:

Files are untracked until tracked using git add

Untrack files with git rm but will also remove from working copy

Remove files from staging with git restore --cached

Add changed files with git add and piece-by-piece with
git add --patch



Finding what’s changed

Two main commands:

git status shows what git knows about changes

By default, ignored files are not shown by git status

git diff shows the changes between the working copy and
staging

git diff --cached shows the changes between staging and
local



Restoring changes

Can restore (undo) changes in the Working Copy and Index (staging
area) [see also GitKraken]:

git restore will undo changes in the Working Copy tree or a
specific file

git restore --cached will undo changes added to the
staging area, i.e. undo the git add

git reset is an older and far more dangerous command for
undoing changes

git reset flags: --soft, --mixed and --hard

git reset will also operate on commits



Committing to Local

The basic command is git commit

git commit [--message] [--message]

git commit --amend will merge changes in the index with the
most recent commit

git commit --amend --no-edit will do the same but not
ask for an update to the commit summary/title



Pushing and Pulling

git push merges your commits from local to remote

git pull --rebase merges commits from remote to your
working copy

A common situation on pull is to receive an error message like:

$ git pull –rebase
error: cannot pull with rebase: You have unstaged changes.
error: please commit or stash them.

What is “stashing“?



Pushing and Pulling

A common situation on push is to receive an error message like:

$ git push
To gitlab.ecs.vuw.ac.nz:Courses/SWEN326/SWEN326.git
! [rejected] 41-... -> 41-... (fetch first)

error: failed to push some refs to ’<path-to-repo>’
hint: Updates were rejected because the remote
hint: contains work that you do not have locally.
hint: This is usually caused by another repository
hint: pushing to the same ref. You may want to first
hint: integrate the remote changes (e.g., ’git pull ...’)
hint: before pushing again. See the ’Note about
hint: fast-forwards’ in ’git push --help’ for details.

Need to pull before pushing. Always use the rebase merge strategy!



Stashing changes

Basic concepts:

The stash is a queue, thus: git stash [push] and
git stash pop

git stash list shows the list of stashes;
select a stash with git stash pop stash@{<number>}

Show the contents of a stash with
git stash show [stash@{<number>}]

Apply the contents of a stash without removing it with
git stash apply [stash@{<number>}]

Give stashes better messages with
git stash --message "..."



Pushing and Pulling

A common situation when changes have been made “outside” git:

$ git pull –rebase
...
error: The following untracked working tree files would be overwritten
by merge:
<some files>
Please move or remove them before you merge.
Aborting



git hooks

git hooks execute scripts on specific events.

pre-commit https://pre-commit.com/

“A framework for managing and maintaining multi-language
pre-commit hooks.”

“. . . we recognised that sharing our pre-commit hooks across
projects is painful.”

pre-commit not limited to one hook only

Incorporated in the data-recorder repository

https://pre-commit.com/

