
ENGR 301 Project Management
Lecture 10 — git III

James Quilty

School of Engineering and Computer Science
Victoria University of Wellington



Introduction

Today’s lecture concludes our discussion of basic usage of git with
branches. References you may find useful are:

git documentation https://git-scm.com/docs

Pro Git book
https://git-scm.com/book/en/v2

Git: Mastering Version Control (O’reilly)
https://bit.ly/4accAng

Version Control (Git)
https://missing.csail.mit.edu/2020/version-control/

https://git-scm.com/docs
https://git-scm.com/book/en/v2
https://bit.ly/4accAng
https://missing.csail.mit.edu/2020/version-control/


Branches

Branches are an integral part of most SCM tools

git branch and git switch are the main commands

git branch allows branch creation, renaming, deletion, etc.

git checkout will switch to a branch and update the working
copy

git switch (introduced in 2.23) is a “friendlier”, and thus
recommended, version of git checkout



Branching Strategies

A branching strategy is necessary to keep the situation with git from
spiralling out of control. There are many branching strategies, the one
we will use a simplified version of GitLab Workflow. Branches are:

created from an Issue via a Merge Request

directed toward a single purpose

typically short-lived on the time scale of the project

schematics and PCB layout branches will be longer-lived
— exceptio probat regulam



Merging Branches

Branches are all good-and-well, but how do we merge branches?

Use GitLab’s Merge Request support to merge branches to main

Avoid git merge manually unless you know what you’re doing

Never git merge main on a branch

Avoid Foxtrots! https://bit.ly/43liksE

https://bit.ly/43liksE


Interactive Rebasing

git rebase is a very powerful command which can perform several
different actions. Let’s look at the simplest application: interactively
reordering, dropping and squashing local commits

on a branch invoke by git rebase --interactive

use your editor to reorder, squash, drop, etc. commits

have confidence: you should be able to recover from mistakes by
using the RefLog

Fundamental Rule of Rebasing: rebasing commits which have not
been pushed to remote is safe, but rebasing commits pushed to
remote can disrupt others.



Cherry-picking

Sometimes you’ll want to move a commit, or series of commits, from
one branch to another.

On the target branch use git cherry-pick <sha>

Use git cherry-pick --no-commit <sha> if you just want
the files without the commit

Perform an interactive rebase on the source branch to drop
moved commits.

The local vs. remote rules apply: local is safe[-ish] but working with
commits pushed to remote should be approached with caution.



Pruning Branches

Keeping your local copy tidy sometimes requires some manual
intervention, particularly regarding branches.

git remote prune origin

git branch --all

git branch --delete <branch>

will help remove merged and deleted branches from your local copy.

Again, reference to a git GUI like GitKraken will be helpful.


