
These notes focus on the practicalities of setting-up and using git for source control management, a
deeper understanding is left for another lecture.

git on the command line
GitKraken

Source Control Management (SCM), also known as version control, has been around for a long time: the
first full system was 1972 with precursor systems as far back as 1962.

Conceptually Simple:

systematically store previous versions of files;
each file has specific version or revision identifier;
allow examination and retrieval of earlier versions;

Source control management is not a backup system however.

Centralised: repository files served from a server, local copies of files only.

Decentralised: a copy of the entire repository is held locally as well as local copies of the files. There may
be many remote copies of the repository.

Contemporary practice is that even decentralised SCM systems have a centrally served repository.

Why are we learning git ? A couple of reasons.

First, because it's effectively the only SCM system used today:

ENGR 301 Lecture Notes

Source Control Management with git

Source Control Management

Centralised and Decentralised

Why git ?

Stack Overflow Developer Survey 2022

Version control systems

https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems

No other technology is as widely used as Git. Especially among Professional Developers. But for
those learning to code, 17% still do not use a version control system.

Second, for all the reasons in the blog post 10 things I hate about Git by Steve Bennett:

1. Complex information model
2. Crazy command line syntax
3. Crappy documentation
4. Information model sprawl
5. Leaky abstraction
6. Power for the maintainer, at the expense of the contributor
7. Unsafe version control
8. Burden of VCS maintenance pushed to contributors
9. Git history is a bunch of lies

10. Simple tasks need so many commands

Note: this blog post received 1,018 comments totalling more than 120,000 words.

Download and install git if you don't have it already. On Windows, install the Windows Subsystem for
Linux.

Set up a SSH key to use with git clone so repositories can be cloned with SSH. This avoids the
problem with HTTPS cloning: having to re-enter your password on the command line for access to the
remote repository. See: https://docs.gitlab.com/ee/user/ssh.html.

In Linux and macOS, SSH keeps its user configuration files at ~/.ssh (the ~ means "the user's home
directory"). See if you have some files

$ ls -1 ~/.ssh
config
id_rsa
id_rsa.pub
known_hosts

If you don't have a key (they're not necessarily created by default) then create one with the ssh-keygen

command; GitLab :

ssh-keygen -t ed25519 -C "your.email@ecs.vuw.ac.nz"

Setup

SSH Key Setup

https://stevebennett.me/2012/02/24/10-things-i-hate-about-git/
https://docs.gitlab.com/ee/user/ssh.html

It's wisest to enter a password for your SSH key! If you become tired of entering it repeatedly, look into how
to activate ssh-agent on your system.

Need to copy the public key to our profile in GitLab https://gitlab.ecs.vuw.ac.nz/-/profile/keys. Copy the
public key information from the terminal into the field in GitLab's setting page. To do this manually:

less ~/.ssh/id_ed25519.pub

Alternate commands are detailed at https://docs.gitlab.com/ee/user/ssh.html#add-an-ssh-key-to-your-gitlab-
account.

Note: GitKraken can also generate SSH keys for you, but it requires some configuration.

The global configuration file is ~/.gitconfig and contains things like your name and email address
(logged when interacting with git). There are some things you'll want to set

git config --global user.name “Firstname Lastname”
git config --global user.email “Firstname.Lastname@ecs.vuw.ac.nz”

Note: configuration is a per-account kind of thing (stored in dot-files) so it must, effectively, be set on every
computer you use.

There are two files which contain patterns for files which you don't want to place under version control

a .gitignore file in the working directory
the global ~/.gitignore_global file.

Best to use simple wildcard patterns.

Generally want to ignore:

intermediate files which are generated from source
final results, text or binary, i.e. "artefacts"
system files

See https://docs.gitlab.com/ee/topics/gitlab_flow.html#git-workflow

The main way to obtain files from the remote repository is to clone it

Configuration

Ignoring Files

Working with files

https://gitlab.ecs.vuw.ac.nz/-/profile/keys
https://docs.gitlab.com/ee/user/ssh.html#add-an-ssh-key-to-your-gitlab-account
https://docs.gitlab.com/ee/topics/gitlab_flow.html#git-workflow

git clone <ssh>

The main way to update your working copy is to pull

git pull --rebase

Note: Always use --rebase !

git log --all --full-history -- <path>

On the target branch use git cherry-pick <sha> (possibly with the --no-commit flag) and then
perform an interactive rebase on the source branch to delete the moved commit.

Use git add --patch for an interactive add which allows the selection/splitting of hunks to add.

1. How (and why!) to keep your Git commit history clean (GitLab Blog)
2. How to keep your commits atomic
3. How to write a git commit message
4. GitLab Documentation on Closing issues with git commits:

Automatic issue closing
Issue closing patterns

More than one way to do this [1,2]:

git checkout <commit_hash_id> -- <file_path>

git restore --source <commit_hash_id> <file_path>

The contemporary way is to use git restore [3] although note the warning from the documentation:

Obtaining the History of a specific file

Moving a Commit from One Branch to Another

Selecting Which Parts of a Modified File to Commit

Commit Messages

Restoring a specific file to a previous version

https://about.gitlab.com/2018/06/07/keeping-git-commit-history-clean/
https://www.freshconsulting.com/atomic-commits/
https://chris.beams.io/posts/git-commit/
https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://docs.gitlab.com/ee/administration/issue_closing_pattern.html

THIS COMMAND IS EXPERIMENTAL. THE BEHAVIOR MAY CHANGE.

Pitfall: if the file has been moved to a different path in the tree subsequent to <commit_hash_id> the
checkout/restore will put the file at the old path from <commit_hash_id> .

1. How do I reset or revert a file to a specific revision? https://stackoverflow.com/questions/215718/how-
do-i-reset-or-revert-a-file-to-a-specific-revision

2. How to reset a file to an old revision https://gitbetter.substack.com/p/how-to-reset-a-file-to-an-old-
revision

3. git restore https://git-scm.com/docs/git-restore

1. 10 things I hate about Git by Steve Bennett https://stevebennett.me/2012/02/24/10-things-i-hate-about-
git/

2. A year of using Git: the good, the bad, and the ugly https://ikriv.com/blog/?p=1905
3. A Short History of Git https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
4. A successful Git branching model https://nvie.com/posts/a-successful-git-branching-model/ Note: not

recommended for students to follow, just history
5. git man page generator https://git-man-page-generator.lokaltog.net

git-hoist-remote
git-sponsor-status
git-ignore-backup
git-flatten-clone
git-fornicate-bug-report

Opinion

https://stackoverflow.com/questions/215718/how-do-i-reset-or-revert-a-file-to-a-specific-revision
https://gitbetter.substack.com/p/how-to-reset-a-file-to-an-old-revision
https://git-scm.com/docs/git-restore
https://stevebennett.me/2012/02/24/10-things-i-hate-about-git/
https://ikriv.com/blog/?p=1905
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://nvie.com/posts/a-successful-git-branching-model/
https://git-man-page-generator.lokaltog.net/
https://git-man-page-generator.lokaltog.net/#aG9pc3QkJHJlbW90ZQ==
https://git-man-page-generator.lokaltog.net/#c3BvbnNvciQkc3RhdHVz
https://git-man-page-generator.lokaltog.net/#aWdub3JlJCRiYWNrdXA=
https://git-man-page-generator.lokaltog.net/#ZmxhdHRlbiQkY2xvbmU=
https://git-man-page-generator.lokaltog.net/#Zm9ybmljYXRlJCRidWcgcmVwb3J0

