
Week 1 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Admin Stuff: Exercise 1

• Exercise 1 is out

• Please visit course wiki
(https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Exercises) for
more details
• For quick help, e-mail nwen241-staff@ecs.vuw.ac.nz

• Otherwise, attend any of the Helpdesk sessions

• Submit your answers to Exercise 1 on or before 06 Mar 2024 23:59

2

https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Exercises
mailto:nwen241-staff@ecs.vuw.ac.nz

Content

• Systems Programming

• C Program Design

• C Compilation Process

• C Fundamentals
• Identifiers and reserved keywords

• Data types, constants and literals

• Operators and expressions

3

What is Systems Programming?

4

Systems Programming

• Systems programming refers to the implementation of systems
programs or software

• Systems program / software:
• Programs that support the operation and use of the computer system itself
• Maybe used to support other software and application programs
• May contain low-level or architecture-dependent code

• Low-level or architecture-dependent code:
• Program that directly accesses registers or memory locations
• Program that uses instructions specific to a computer architecture

5

Example Systems Programs

• Operating system

• Embedded system software (firmware)

• Device drivers

• Text editors, compilers, assemblers

• Virtual machines

• Server programs
• Database systems

• Network protocols

6

Why C/C++?

• C/C++ supports high-level abstractions and low-level access to
hardware at the same time

• High-level abstractions:
• User-defined types (structures and classes)

• Data structures (stacks, queues, lists)

• Functions

• Low-level access to hardware:
• Possible access to registers

• Dynamic memory allocation

• Inclusion of assembly code

7

Comparing C, C++ and Java

• C is the basis for C++ and Java
– C evolved into C++

– C++ transmuted into Java

– The “class” is an extension of “struct” in C

• Similarities
– Java uses a syntax similar to C++ (for, while, …)

– Java supports OOP as C++ does (class, inheritance, …)

• Differences
– Java does not support pointer

– Java frees memory by garbage collection

– Java is more portable by using bytecode and virtual machine

– Java does not support operator overloading

8

C Program Design

9

Program Structure

• A typical C program consists of
• 1 or more header files

• 1 or more C source files

#include <stdio.h>

int main(void)
{

printf("Hello world\n");

return 0;
}

Preprocessor directive to include
stdio.h header file which contains
printf function prototype

main function definition, invoking
printf to display “Hello, world”,
and return 0

10

Main Function

• A C program must have exactly one main function

• Execution begins with the main function

int main(void)
{

/* Main function body */
}

11

Header File Inclusion

• Include file named filename

• Preprocessor searches for file in pre-defined locations

• Include file named filename

• Preprocessor searches for file in current directory first, then in the pre-
defined locations as specified by the implementation

#include <filename>

#include "filename"

12

Header Files

• A header file usually contains function prototypes, constant
definitions, type definitions, etc.

• Which header file to include?
– Include header files that contain the function prototype, constant definition,

type definition, etc., used in your program

13

Standard C Library Header Files

• To know more about the C standard library, visit
https://www.tutorialspoint.com/c_standard_library/index.htm

C provides a standard library* which consists of the following headers:

assert.h
ctype.h
errno.h

float.h
limits.h
locale.h

math.h
setjmp.h
signal.h

stdarg.h
stddef.h
stdio.h

stdlib.h
string.h
time.h

*C99 and C11 standards added more header files.

Large C Program

.h

Header files
from standard
C library

.h Own header files

.c Source files

15

C Compilation Process

16

Compilation Process At A Glance

1) Preprocessing Phase

2) Compilation Phase

3) Assembly Phase

4) Linking Phase

Preprocessing Phase

• The preprocessor modifies the
original C program according to
directives that begin with the '#'
character
• Example: #include <stdio.h> command

tells the preprocessor to read the
contents of the system header file
stdio.h and insert it directly into the
program text.

• The result is another C program,
typically with the .i suffix.

Source file

.c Pre-
Processor

.h
.hh

.h
.hh .h

Included header files

.i

Expanded
source file /
Compilation
unit

18

Compilation Phase

• The compiler translates the text file (.i) into the text file (.s), which
contains an assembly-language program.

.i

Expanded
source file /
Compilation
unit

Compiler .s

Assembler
file

19

Machine-dependent

Assembly Phase

The assembler translates assembler
file (.s) into machine-language
instructions, packages them in a
form known as a relocatable object
program, and stores the result in the
object file (.o).

 Object files are binary - if you try to
open one with a text editor, it would
appear to be gibberish.

.s

Assembler
file

Assembler .o

Object file

20

Linking Phase

•The linker looks for external object
files needed by the program and
merges these with the object file
generated in the assembly phase,
creating an executable object file (or
simply executable) that is ready to be
loaded into memory and executed
by the system.

.o

Object file

Linker

.h
.hh

.h
.hh .o

Executable file

21

In Practice

• All the phases can be done in one step using the GNU C Compiler
(gcc)

22

#include <stdio.h>
int main(void)
{

printf("Hello world\n");

return 0;
}

hello.c

gcc hello.c

gcc hello.c -o hello

Generates executable
file a.out

Generates executable
file hello

What You Need to Program in C/C++

• Text editor to type in code
• Any text editor will do (even notepad)

• Suggested editors: Sublime Text, Kate (Linux only)

• C/C++ toolchain (pre-processor, compiler, assembler, linker,
debugger)
• Already installed in ECS lab computers (CO246) and servers

• Terminal to run compilation commands and execute program

23

C Fundamentals

24

Identifiers

• Identifier is used to name macros, variables, functions, structs,
unions, and other entities in a computer program

• Java and C have similar rules for identifiers, except:
• In C, $ is not allowed in identifiers (though some compilers allow $)

25

Rules on Identifiers

• An identifier is a sequence of letters and digits
– The first character must be a letter

• The underscore character _ counts as a letter

• Upper and lower case letters are different

• Identifiers may have any length
– Usually, only the first 31 characters are significant

– For macro names, only the first 63 characters are significant

• Reserved keywords cannot be used as identifiers!

26

Examples

counter

_Temp_variable_2

1myVariable

continue

Valid: consists of letters

Valid: consists of letters and digits

Invalid: first character is not a
letter

Invalid: reserved word

27

Reserved Keywords

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

28

Data Types

• Recall: Java has 8 basic data types which have fixed sizes

Data Type Size (bytes)

boolean 1

byte 1

char 2

short 2

int 4

long 8

float 4

double 8

29

Data Types

• C data types:

Data Type Size (bytes)

boolean 1

byte 1

char 2 1

short (short int) 2 Machine-dependent

int 4 Machine-dependent

long (long int) 8 Machine-dependent

long long (long long int) Machine-dependent

float 4 Machine-dependent

double 8 Machine-dependent

long double Machine-dependent

Integral
types

Float
types

30

Data Type Size

• Sizes of different types
– Use sizeof() to find out

– Some of the types size may vary from machine to machine

• The following rules are always guaranteed:
• sizeof(char) == 1

• sizeof(char) <= sizeof(short) <= sizeof(int) <=
sizeof(long) <= sizeof(long long)

• sizeof(float) <= sizeof(double) <= sizeof(long double)

31

Data Types

• Integral types can either be signed or unsigned

signed int var1; // Signed integer

unsigned int var2; // Unsigned integer

int var1; // If signed or unsigned is not present, default is signed

32

char Data Type

• unsigned char: 0 to 255; signed char: -128 to 127

• char is meant to hold 1 ASCII character
| 0 NUL| 1 SOH| 2 STX| 3 ETX| 4 EOT| 5 ENQ| 6 ACK| 7 BEL|

| 8 BS | 9 HT | 10 NL | 11 VT | 12 NP | 13 CR | 14 SO | 15 SI |

| 16 DLE| 17 DC1| 18 DC2| 19 DC3| 20 DC4| 21 NAK| 22 SYN| 23 ETB|

| 24 CAN| 25 EM | 26 SUB| 27 ESC| 28 FS | 29 GS | 30 RS | 31 US |

| 32 SP | 33 ! | 34 " | 35 # | 36 $ | 37 % | 38 & | 39 ' |

| 40 (| 41) | 42 * | 43 + | 44 , | 45 - | 46 . | 47 / |

| 48 0 | 49 1 | 50 2 | 51 3 | 52 4 | 53 5 | 54 6 | 55 7 |

| 56 8 | 57 9 | 58 : | 59 ; | 60 < | 61 = | 62 > | 63 ? |

| 64 @ | 65 A | 66 B | 67 C | 68 D | 69 E | 70 F | 71 G |

| 72 H | 73 I | 74 J | 75 K | 76 L | 77 M | 78 N | 79 O |

| 80 P | 81 Q | 82 R | 83 S | 84 T | 85 U | 86 V | 87 W |

| 88 X | 89 Y | 90 Z | 91 [| 92 \ | 93] | 94 ^ | 95 _ |

| 96 ` | 97 a | 98 b | 99 c |100 d |101 e |102 f |103 g |

|104 h |105 i |106 j |107 k |108 l |109 m |110 n |111 o |

|112 p |113 q |114 r |115 s |116 t |117 u |118 v |119 w |

|120 x |121 y |122 z |123 { |124 | |125 } |126 ~ |127 DEL|
33

Variable Declaration

• Similar syntax as Java

• A variable must be declared before it can be used

• A variable may be initialized in its declaration
– If variable name is followed by an equals sign and an expression, the latter serves as

an initializer

• Possible initializers
– Constant
– Expression

int i = 0, j = 1, k = 2;
char c = 'A';
float f = 1.25;

34

Constants and Literals

• Constants are fixed values that cannot be changed during a
program’s execution

• The fixed values are called literals

• Literals
• Integer

• Floating Point

• Character

• String

• Enumeration

35

Declaring Constants

• Constants can be declared using const qualifier or #define pre-
processor

• Such named constants are also called symbolic constants

const float PI = 3.14;
const int MAX = 12345;

#define PI 3.14
#define MAX 12345

36

Next Lecture

• Literals (continued)

• Operators and expressions

• Functions

• Function-Like Macros

37

