
Week 2 Lecture 1

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Admin Stuff

• Assignment #1 is out. Visit
https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Assignments to
download handout and sample test files

• Exercise 1 (2.5% of course marks) is due on Wednesday, 06 Mar,
23:59

• Week 1 Practice Quiz is available in course wiki (Lecture Schedule)
for self-assessment of Week 1 topics.

2

https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Assignments

Content

• Literals (continued from previous lecture)

• Operators and expressions

• Functions

• Function-like macros

• Introduction to Arrays

3

Recap: Constants and Literals

• Constants are fixed values that cannot be changed during a
program’s execution

• The fixed values are called literals

• Literals
• Integer

• Floating Point

• Character

• String

• Enumeration

4

Recap: Declaring Constants

• Constants can be declared using const qualifier or #define pre-
processor

• Such named constants are also called symbolic constants

const float PI = 3.14;
const int MAX = 12345;

#define PI 3.14
#define MAX 12345

5

Integer Literals

• Used for representing integer-valued constants
• Can be written in decimal (no prefix), octal (prefix 0), or hexadecimal (prefix 0x)

• Can have suffix that is a combination of U (unsigned) and L (long) in any order
• No suffix means the literal is of type int

6

12345

12345u

0xbeef

081

Valid

Valid: unsigned

Valid: hexadecimal

Invalid: 8 is not a valid octal digit

0x123uu Invalid: same suffix is repeated

Floating Point Literals

• Used for representing real-valued constants
• Can be written in decimal form or exponential form

• Can have suffix f (float) or L (long double)
• No suffix means the literal is of type double

7

3.1415

31415e-4

31415e-4L

6.22e

Valid (decimal form)

Valid (exponential form)

Valid: long double

Invalid: incomplete exponent

.e23 Invalid: missing decimal/fraction part

Character Literals

• Used for representing character constants
• Enclosed in single quotes (')

• Can be plain (single character) or escape (single character preceded by \)

8

'A'

'\t'

'Aa'

'\z'

Valid (plain character)

Valid (escape character): tab

Invalid: multiple characters in single quotes

Invalid: not a valid escape character

Type Casting

• Type casting is a way to convert a variable from one data type to
another data type

• C performs automatic type casting (implicit type conversion)

int i = 2;

double d = 2.5;

i = (int)d; // explicit type casting

i = d; // d is converted to an int
// and then assigned to i

9

Operators

• Java and C share many of the built-in operators
• Arithmetic

• Assignment

• Increment/decrement

• Relational

• Equality and logical

• Bitwise

• C specific operators
• Pointers and reference related operators (*, &, ->)

• Others (sizeof, scope, casting)

10

Operator Precedence

• Operator precedence determines the sequence in which operators
in an expression are evaluated

• Associativity determines execution for operators of equal
precedence

• Precedence can be overridden by explicit grouping using
parenthesis: (and)

11

Operator Precedence Table (not complete)

Unary operators

Arithmetic
operators

Ternary operator

Assignment operators

12

Important Things to Remember

• / denotes integer division if both operands are of integral types
• 5/2 evaluates to 2 (integer part is used, decimal part is truncated)

• % denotes modulo operation
• 5%2 evaluates to 1 (the remainder after dividing 5 with 2)

• Increment/decrement operators can only be applied to variables of
basic types

777++;
(a + b*c)--;

k++;
counter--;

Valid if k and counter are
variables of basic types

Invalid

13

“Conversion hierarchy”

• What happens when operands have different types in an arithmetic
expression?
– Implicit type conversion is performed: compiler automatically converts any

intermediate values to the proper type so that the expression can be
evaluated without losing any significance

long int

Conversion
hierarchy

charshort

float

double

long double

int

unsigned long int

14

Implicit Type Conversion Example

int i, x;
float f;
double d;
long int li;

Suppose:

long

long

float

float

float

float

double

doubleint

x = li / i + i * f – d

The final result of the right hand side expression is converted to the type of the
variable on the left of the assignment

15

Control Constructs

• Control flow
• If-else

• Else-if

• Switch

• Loop
• While-loop

• For-loop

• Do-while-loop

• Same syntax as Java

16

Differences

Condition in if-else, else-if, while-loop, for-loop and do-
while-loop

• In Java, the condition must be an expression that evaluates to
boolean

• In C, the condition is an expression that evaluates to any type
• Considered true if expression evaluates to non-zero value, otherwise false

17

Example

• Valid in C

• Will generate syntax error in Java
• Condition inside while-loop should be

changed to an expression that will
evaluate to boolean type, e.g. i-- > 0

int i = 100;

while (i--) {
// do stuff

}

18

Differences

Break and continue

• In Java, break and continue statements can be labelled or
unlabelled

• In C, break and continue statements do not support labels

19

Example

• Valid in Java
but not in C

first:
for (int i = 0; i < 4; i++) {
second:

for (int j = 0; j < 4; j++) {
if (i == 1 && j == 1)

break first;
}

}

20

Example

• Valid in Java
but not in C

first:
for (int i = 0; i < 4; i++) {
second:

for (int j = 0; j < 4; j++) {
if (i == 1 && j <= 1)

continue first;
}

}

21

Functions

• Unlike Java, C allows functions to exist on their own, i.e., outside
any class
• In C, functions are first-class entities: a C program consists of one or more

functions

• A C program must have exactly one main function

• Execution begins with the main function

22

Functions

• General form of a C function definition:

return_type function_name (parameter_list)
{

body of the function
}

Function header

23

Functions

• Examples

void say_hello (void)
{

printf("Hello");
}

int add (int a, int b)
{

return a + b;
}

Formal parameters

24

Invoking Functions

• Example function invocations:

• Before a function can be invoked, either the function definition or
function prototype should have been declared prior to the
invocation

say_hello(); int i = 1, j = 2;
int k = add(i, j);

25

Actual parameters

Function Prototype

• A declaration specifying the return type, function name, and list of
parameter types

26

return_type function_name (parameter_types_list);

Function Prototype

• Examples

• No need to provide identifiers to input parameters, the types of the
input parameters are sufficient

void say_hello (void);

int add (int, int);

int add (int a, int b);

27

Macro Substitution

• Recall: Can define symbolic constants using #define pre-processor

PI is a macro, every occurrence of PI in the program will be replaced
by 3.14

• In general:

• Subsequence occurrences of name will be replaced by replacement

#define name replacement

28

#define PI 3.14

Function-like Macro

• Can abusemacro substitution to define function-like macros

• To define a function-like macro, just append () to the macro name

• Example:

• Can be invoked like a regular function:

#define READ_CHAR() getchar()

…
int c = READ_CHAR();
…

29

Function-like Macro

• Just like functions, function-like macros can take arguments

– Insert comma-separated parameter names between (and)

– Parameter names must be valid identifiers

• Invoke just like normal functions

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

This expression evaluates to 3

z = MAX(1, 3); z = ((1)>(3)?(1):(3));

30

Next Lecture

• Function-like macros

• Arrays

31

