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Recap: Function-like Macro

 Just like functions, function-like macros can take arguments
— Insert comma-separated parameter names between ( and )
— Parameter names must be valid identifiers

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

* Invoke just like normal functions

z = MAX(1, 3); )z = ((1)>(3)?2(1):(3));

This expression evaluates to 3



Problems with Function-like Macros

* Suppose:
#define SQ(X) X * X
* Then:
(int)SQ(r); [Ij> (int)r * r;
SQ(rl + r2); Eij> rl + r2 * rl + r2;

Solution: enclose individual variables with (), including the whole
replacement text

#define SQ(X) ((X) * (X))



Problems with Function-like Macros

* Suppose:

#define SQ(X) ((X) * (X))

e Then:
(int)SQ(r); ) (int)((r) * (r));

SQ(rl + r2); ‘ ((rl + r2) * (rl + r2));



Problems with Function-like Macros

* Suppose:
#define SQ(X) ((X) * (X))

e How about these:

SQ(++r); E:j> ((++r) * (++r));
rincremented twice
SQ(f()); D ((FO) * (FO))s

() invoked twice

Be careful when defining and calling function-like macros!



Arrays

* Anarray is a collection of data that holds a fixed number of data
(values) of the same type

* We distinguish between two types of arrays:
— One-dimensional arrays
— Multi-dimensional arrays

» The C language places no limits on the number of dimensions in an array,
though specificimplementations may



One-Dimensional Array Overview (1)
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One-Dimensional Array Overview (2)
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One-Dimensional Array Overview (3)
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One-Dimensional Array Overview (4)
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Arrays

* The simplest interpretation of an array is one-dimensional array,
often referred to as a list

* Theindividual elements of the array can be accessed via indices
— Thefirstindex of an array starts at @
— Ifthe size of an array is n, to access the last element the index n-1 is used

— Thisis because the index in Cis actually an offset from the beginning of the
array

» Thefirst elementis at the beginning of the array, and hence has zero offset




Declaring Arrays

 Declaring arrays in C differs slightly compared to Java
 Syntax for declaring a one-dimensional array:

data type array name[size];

* Example:
— We declare an array named data of float type and size 4 as:

float datal[4];

— Itcan hold 4 floating-point values

* The size and type of arrays cannot be changed after their declaration!
* Array sizeis fixed at compile-time, cannot be changed during run-time
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Initializing Arrays (1)

* Arrays can be initialized one-by-one
* Forexample:

float datal[4];
data[@] = 22.5;
data[l] = 23.1;
data[2] = 23.7;
data[3] = 24.8;

* Inthe case of large arrays this method is inefficient



Initializing Arrays (2)
* Arrays can be also initialized when they are declared (just as any other

variables):
float data[4] = {22.5, 23.1, 23.7, 24.8};

* An array may be partially initialized, by providing fewer data items than the
size of the array

float data[4] = {22.5, 23.1};

— The remaining array elements will be automatically initialized to zero

« Ifanarrayisto be completely initialized, the dimension (size) of the array is
not required

float data[] = {22.5, 23.1, 23.7, 24.8};

— The compiler will automatically size the array to fit the initialized data
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Arrays and Loops

* Arrays are commonly used in conjunction with loops
— in order to perform the same calculations on all (or some part) of the data items in the array:

int array[10] = {1, 2}; int idx = 0;
while(idx < 10) {

/* do something with array[idx] */
idx++;

for (int idx = 0; idx < 10; idx++){
/* do something with array[idx] */

¥

16



Off-By-One Error

* The most common mistake when working with arraysin Cis forgetting
that indices start at @ and stop one less than the array size

— We often refer to this issue as “off-by-one error”

int datal]={1,2,3,4,5}; /* number of elements is 5 */
for (int idx = ©@; idx <= 5; idx++){

/* do something with data[idx] */
}

* The compiler does not control the limits of the array!

* This type of error can be detected using static code analysis
— Forexample using the cppcheck tool
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Determining Size of Array

* Thesize of an array can be determined using the sizeof()
operator

* It will return the number of bytes the array "occupies" in the
memory

* To determine the number of elements in the array, the returned

value must be divided by the number of bytes reserved for the
data type'!
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Determining Size of Array

int data[] = {1, 2, 3, 4, 5};
int bytes, len;

/* Print number of bytes used by array */
bytes = sizeof(data);
printf("Bytes used: %d\n", bytes);

/* Print number of elements or items in array */
len = sizeof(data)/sizeof(int);
printf("Number of items: %d\n", len);

/* To traverse array, use number of elements as limit */
for (int idx = @; idx < len; idx++) {
/* do some stuff on element data[idx] */

}
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Passing 1D Arrays to Functions (1)

* Passing asingle array element to a function
— can be passed in a similar manner as passing a variable to a function

void display(int a) {
printf("%d", a);
}

int main(void) {
int age[] = { 18, 19, 20 };

display(age[2]); /* Passing element age[2] only */

return 0;

¥
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Passing 1D Arrays to Functions (2)

* Passing an entire array to a function

* When passing an array as an argument to a function, it is passed by its
memory address (starting address of the memory area) and not its value!

float average(int a[]) {
int sum = 9;
for (int i = 9; 1 < 6; ++i)
sum += a[i];
float avg = ((float)sum / 6);
return avg,
}
int main(void) {
int agel] {18,19,20,21,22,23};
float avg = average(age);
printf("Average age=%.2f\n", avg);



Multi-dimensional Arrays

* In C, you can create array of an array known as multidimensional
array

* The simplest interpretation of a multi-dimensional array is a table,
l.e. a two-dimensional array

— each row has the same number of columns
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Two-Dimensional Arrays Overview (1)
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1.0 2.0 3.0 4.0 5.0
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Two-Dimensional Arrays Overview (3)
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Two-Dimensional Arrays Overview (4)
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Two-Dimensional Arrays

* Declaring a char array with 3 rows and 5 columns
char two _d[3][5];

— The array can hold 15 char elements

* Accessing avalue
char ch;
ch = two d[2][4];

* Modifying a value
two_d[@][0] = 'X';

e Thearray can be initialized in one of the following ways
int two d[2][3] = {{5, 2, 1}, {6, 7, 8}};
int two_d[2][3] = {5, 2, 1, 6, 7, 8};
int two d[][3] = {{5, 2, 1}, {6, 7, 8}};

— The number of columns must be explicitly stated. The compiler will find the
appropriate amount of rows based on the initializer list
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Passing 2D Arrays to Functions (1)

* Passing asingle array element to a function
— can be passed in a similar manner as passing a variable to a function

void display(int a) {
printf("%d", a);
}

int main(void) {
int age[2][3] = { {18, 19, 20}, {21, 22, 23} };

display(age[1][2]); /* Passing element age[1][2] only */

return 0;

¥
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Passing 2D Arrays to Functions (2)

* Passing an entire array to a function

* When passing an array as an argument to a function, it is passed by its
memory address (starting address of the memory area) and not its value!

void enterData(int d[][10]) {
/* Code for reading and saving data into 2D array */

¥

int main(void)

{
int data[10][10];

enterData(data);
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What is String in C?

* Clanguage does not support strings as a basic data type

* ACstring is just an array that contains ASCII characters terminated
by the null character "\0'

* A Cstring is stored in an array of chars

H i 2 4 1 ! I | \o "Hi 241 11"

Not a valid string
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String Length

* Number of bytes/characters excluding the null character

Entire string occupies 10 bytes
A
H i 2 4 1 1 /\e

String length =9 bytes

* strlen() functionin<string.h> returns the string length



String Literal vs String Variable

* In C, we distinguish between string literals and string variables

* Astring literal refers to the string constant value which is stored in
the read-only memory area of the program

* Astring variable refers to a string that is stored in an array which
can be modified
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String Literal (1)

* Enclosed in double quotes (") and can contain character literals
(plain and escape characters)

* Can be broken up into multiple lines (each line ends with \) or
separated by whitespaces

"Hello, world" "Hello" ", " "world"

"Hello, \
world"
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String Literal (2)

 String literals may contain as few as one or even zero characters

* Do not confuse a single-character string literal, e.g. "A" with a
character constant, "'A’

* The former is actually two characters, because of the null-
terminator stored at the end

* An empty string, " ", consists of only the null-terminator, and is
considered to have a string length of zero, because the null-
terminator does not count when determining string lengths




String Literal (3)

 String literals are passed to functions as pointers to a stored string.
For example, given the statement:

printf("Hello world!\n");

— Thestring literal "Hello world!\n" will be stored somewhere in memory,
and the address will be passed to printf()

— Thefirstargument to printf() is actually defined as a char *

* We will revisit this when we talk about pointers
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Operations on String Literals

 String literals may be subscripted

printf("%c\n", "Hello"[2]); /* will print '1' */

» Attempting to modify a string literal results in undefined behaviour,
and may cause problems in different ways depending on the
compiler, e.q.

"Hello"[2] = 'e';
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Symbolic String Constants

* Similar to integer and float symbolic constants, symbolic string
constants can be declared using const qualifier or #define pre-
processor

const char *MSG = "Hello, world";
const char *MSG_A = "Hello, \
world";

const char *MSG_ B = "Hello" ", " "world";

#define MSG "Hello, world";
#define MSG_A "Hello, \

world"
#define MSG B "Hello" ", " "world"
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Next Lecture

* Strings (cont.)

e Structures
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