Week 2 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz

Content

* Function-like macros (cont.)
* Arrays
* Introduction to Strings

Recap: Function-like Macro

 Just like functions, function-like macros can take arguments
— Insert comma-separated parameter names between (and)
— Parameter names must be valid identifiers

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

* Invoke just like normal functions

z = MAX(1, 3);)z = ((1)>(3)?2(1):(3));

This expression evaluates to 3

Problems with Function-like Macros

* Suppose:
#define SQ(X) X * X
* Then:
(int)SQ(r); [Ij> (int)r * r;
SQ(rl + r2); Eij> rl + r2 * rl + r2;

Solution: enclose individual variables with (), including the whole
replacement text

#define SQ(X) ((X) * (X))

Problems with Function-like Macros

* Suppose:

#define SQ(X) ((X) * (X))

e Then:
(int)SQ(r);) (int)((r) * (r));

SQ(rl + r2); ‘ ((rl + r2) * (rl + r2));

Problems with Function-like Macros

* Suppose:
#define SQ(X) ((X) * (X))

e How about these:

SQ(++r); E:j> ((++r) * (++r));
rincremented twice
SQ(f()); D ((FO) * (FO))s

() invoked twice

Be careful when defining and calling function-like macros!

Arrays

* Anarray is a collection of data that holds a fixed number of data
(values) of the same type

* We distinguish between two types of arrays:
— One-dimensional arrays
— Multi-dimensional arrays

» The C language places no limits on the number of dimensions in an array,
though specificimplementations may

One-Dimensional Array Overview (1)

15

21

-15

-6

}

|

size of array: 10

¢= array of ints

One-Dimensional Array Overview (2)

2.3

-3.2

0.7

2.8

0.0

4.8

7.2

1.2

-1.1

1.6

}

size of array: 10

|

¢= array of floats

One-Dimensional Array Overview (3)

e 241 ! < array of chars

\ }
|

size of array: 10

10

One-Dimensional Array Overview (4)

e |1 2|34 |5]|6]|7]|8]|9|—indices

H | i 2 | 4 |1 L'J ¢<= array elements
\ AN }

Y
size of array: 10 \ element atindex 7
array|[7]

11

Arrays

* The simplest interpretation of an array is one-dimensional array,
often referred to as a list

* Theindividual elements of the array can be accessed via indices
— Thefirstindex of an array starts at @
— Ifthe size of an array is n, to access the last element the index n-1 is used

— Thisis because the index in Cis actually an offset from the beginning of the
array

» Thefirst elementis at the beginning of the array, and hence has zero offset

Declaring Arrays

 Declaring arrays in C differs slightly compared to Java
 Syntax for declaring a one-dimensional array:

data type array name[size];

* Example:
— We declare an array named data of float type and size 4 as:

float datal[4];

— Itcan hold 4 floating-point values

* The size and type of arrays cannot be changed after their declaration!
* Array sizeis fixed at compile-time, cannot be changed during run-time

13

Initializing Arrays (1)

* Arrays can be initialized one-by-one
* Forexample:

float datal[4];
data[@] = 22.5;
data[l] = 23.1;
data[2] = 23.7;
data[3] = 24.8;

* Inthe case of large arrays this method is inefficient

Initializing Arrays (2)
* Arrays can be also initialized when they are declared (just as any other

variables):
float data[4] = {22.5, 23.1, 23.7, 24.8};

* An array may be partially initialized, by providing fewer data items than the
size of the array

float data[4] = {22.5, 23.1};

— The remaining array elements will be automatically initialized to zero

« Ifanarrayisto be completely initialized, the dimension (size) of the array is
not required

float data[] = {22.5, 23.1, 23.7, 24.8};

— The compiler will automatically size the array to fit the initialized data

15

Arrays and Loops

* Arrays are commonly used in conjunction with loops
— in order to perform the same calculations on all (or some part) of the data items in the array:

int array[10] = {1, 2}; int idx = 0;
while(idx < 10) {

/* do something with array[idx] */
idx++;

for (int idx = 0; idx < 10; idx++){
/* do something with array[idx] */

¥

16

Off-By-One Error

* The most common mistake when working with arraysin Cis forgetting
that indices start at @ and stop one less than the array size

— We often refer to this issue as “off-by-one error”

int datal]={1,2,3,4,5}; /* number of elements is 5 */
for (int idx = ©@; idx <= 5; idx++){

/* do something with data[idx] */
}

* The compiler does not control the limits of the array!

* This type of error can be detected using static code analysis
— Forexample using the cppcheck tool

17

Determining Size of Array

* Thesize of an array can be determined using the sizeof()
operator

* It will return the number of bytes the array "occupies" in the
memory

* To determine the number of elements in the array, the returned

value must be divided by the number of bytes reserved for the
data type'!

18

Determining Size of Array

int data[] = {1, 2, 3, 4, 5};
int bytes, len;

/* Print number of bytes used by array */
bytes = sizeof(data);
printf("Bytes used: %d\n", bytes);

/* Print number of elements or items in array */
len = sizeof(data)/sizeof(int);
printf("Number of items: %d\n", len);

/* To traverse array, use number of elements as limit */
for (int idx = @; idx < len; idx++) {
/* do some stuff on element data[idx] */

}

19

Passing 1D Arrays to Functions (1)

* Passing asingle array element to a function
— can be passed in a similar manner as passing a variable to a function

void display(int a) {
printf("%d", a);
}

int main(void) {
int age[] = { 18, 19, 20 };

display(age[2]); /* Passing element age[2] only */

return 0;

¥

20

Passing 1D Arrays to Functions (2)

* Passing an entire array to a function

* When passing an array as an argument to a function, it is passed by its
memory address (starting address of the memory area) and not its value!

float average(int a[]) {
int sum = 9;
for (int i = 9; 1 < 6; ++i)
sum += a[i];
float avg = ((float)sum / 6);
return avg,
}
int main(void) {
int agel] {18,19,20,21,22,23};
float avg = average(age);
printf("Average age=%.2f\n", avg);

Multi-dimensional Arrays

* In C, you can create array of an array known as multidimensional
array

* The simplest interpretation of a multi-dimensional array is a table,
l.e. a two-dimensional array

— each row has the same number of columns

22

Two-Dimensional Arrays Overview (1)

— rows: 3

|
columns: 5

size of array: 15

23

10

11

12

13

14

15

Two-Dimensional Arrays Overview (2)

<= array of ints

24

1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0
11.0 | 12.0 | 13.0 | 14.0 | 15.0

Two-Dimensional Arrays Overview (3)

<= array of floats

25

Two-Dimensional Arrays Overview (4)

p element at row 3 column 4
array[2][3]

/

(%) 1 2 3
(%] H e 1 1 0
1 W o] r

1
/ <= array elements

e

size of array: 15

26

Two-Dimensional Arrays

* Declaring a char array with 3 rows and 5 columns
char two _d[3][5];

— The array can hold 15 char elements

* Accessing avalue
char ch;
ch = two d[2][4];

* Modifying a value
two_d[@][0] = 'X';

e Thearray can be initialized in one of the following ways
int two d[2][3] = {{5, 2, 1}, {6, 7, 8}};
int two_d[2][3] = {5, 2, 1, 6, 7, 8};
int two d[][3] = {{5, 2, 1}, {6, 7, 8}};

— The number of columns must be explicitly stated. The compiler will find the
appropriate amount of rows based on the initializer list

27

Passing 2D Arrays to Functions (1)

* Passing asingle array element to a function
— can be passed in a similar manner as passing a variable to a function

void display(int a) {
printf("%d", a);
}

int main(void) {
int age[2][3] = { {18, 19, 20}, {21, 22, 23} };

display(age[1][2]); /* Passing element age[1][2] only */

return 0;

¥

28

Passing 2D Arrays to Functions (2)

* Passing an entire array to a function

* When passing an array as an argument to a function, it is passed by its
memory address (starting address of the memory area) and not its value!

void enterData(int d[][10]) {
/* Code for reading and saving data into 2D array */

¥

int main(void)

{
int data[10][10];

enterData(data);

29

What is String in C?

* Clanguage does not support strings as a basic data type

* ACstring is just an array that contains ASCII characters terminated
by the null character "\0'

* A Cstring is stored in an array of chars

H i 2 4 1 ! I | \o "Hi 241 11"

Not a valid string

30

String Length

* Number of bytes/characters excluding the null character

Entire string occupies 10 bytes
A
H i 2 4 1 1 /\e

String length =9 bytes

* strlen() functionin<string.h> returns the string length

String Literal vs String Variable

* In C, we distinguish between string literals and string variables

* Astring literal refers to the string constant value which is stored in
the read-only memory area of the program

* Astring variable refers to a string that is stored in an array which
can be modified

32

String Literal (1)

* Enclosed in double quotes (") and can contain character literals
(plain and escape characters)

* Can be broken up into multiple lines (each line ends with \) or
separated by whitespaces

"Hello, world" "Hello" ", " "world"

"Hello, \
world"

33

String Literal (2)

 String literals may contain as few as one or even zero characters

* Do not confuse a single-character string literal, e.g. "A" with a
character constant, "'A’

* The former is actually two characters, because of the null-
terminator stored at the end

* An empty string, " ", consists of only the null-terminator, and is
considered to have a string length of zero, because the null-
terminator does not count when determining string lengths

String Literal (3)

 String literals are passed to functions as pointers to a stored string.
For example, given the statement:

printf("Hello world!\n");

— Thestring literal "Hello world!\n" will be stored somewhere in memory,
and the address will be passed to printf()

— Thefirstargument to printf() is actually defined as a char *

* We will revisit this when we talk about pointers

35

Operations on String Literals

 String literals may be subscripted

printf("%c\n", "Hello"[2]); /* will print '1' */

» Attempting to modify a string literal results in undefined behaviour,
and may cause problems in different ways depending on the
compiler, e.q.

"Hello"[2] = 'e';

36

Symbolic String Constants

* Similar to integer and float symbolic constants, symbolic string
constants can be declared using const qualifier or #define pre-
processor

const char *MSG = "Hello, world";
const char *MSG_A = "Hello, \
world";

const char *MSG_ B = "Hello" ", " "world";

#define MSG "Hello, world";
#define MSG_A "Hello, \

world"
#define MSG B "Hello" ", " "world"

37

Next Lecture

* Strings (cont.)

e Structures

38

