
Week 2 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Content

• Function-like macros (cont.)

• Arrays

• Introduction to Strings

2

Recap: Function-like Macro

• Just like functions, function-like macros can take arguments

– Insert comma-separated parameter names between (and)

– Parameter names must be valid identifiers

• Invoke just like normal functions

#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))

This expression evaluates to 3

z = MAX(1, 3); z = ((1)>(3)?(1):(3));

3

Problems with Function-like Macros
• Suppose:

• Then:

• Solution: enclose individual variables with (), including the whole
replacement text

#define SQ(X) X * X

(int)SQ(r); (int)r * r;

SQ(r1 + r2); r1 + r2 * r1 + r2;

#define SQ(X) ((X) * (X))
4

Problems with Function-like Macros
• Suppose:

• Then:

(int)SQ(r); (int)r * r;

SQ(r1 + r2); r1 + r2 * r1 + r2;

#define SQ(X) ((X) * (X))

(int)((r) * (r));

((r1 + r2) * (r1 + r2));

5

Problems with Function-like Macros
• Suppose:

• How about these:

#define SQ(X) ((X) * (X))

SQ(++r); ((++r) * (++r));

SQ(f()); ((f()) * (f()));

r incremented twice

f() invoked twice

Be careful when defining and calling function-like macros!
6

Arrays

• An array is a collection of data that holds a fixed number of data
(values) of the same type

• We distinguish between two types of arrays:
– One-dimensional arrays

– Multi-dimensional arrays

• The C language places no limits on the number of dimensions in an array,
though specific implementations may

7

One-Dimensional Array Overview (1)

5 10 15 -3 0 77 21 1 -15 -6

size of array: 10

array of ints

8

One-Dimensional Array Overview (2)

5 10 15 -3 0 77 21 1 -15 -62.3 -3.2 0.7 2.8 0.0 4.8 7.2 1.2 -1.1 1.6

size of array: 10

array of floats

9

One-Dimensional Array Overview (3)

5 10 15 -3 0 77 21 1 -15 -6H i 2 4 1 !

size of array: 10

array of chars

10

One-Dimensional Array Overview (4)

H i 2 4 1 !

size of array: 10

array elements

0 1 2 3 4 5 6 7 8 9 indices

element at index 7
array[7]

11

Arrays

• The simplest interpretation of an array is one-dimensional array,
often referred to as a list

• The individual elements of the array can be accessed via indices
– The first index of an array starts at 0

– If the size of an array is n, to access the last element the index n-1 is used

– This is because the index in C is actually an offset from the beginning of the
array

• The first element is at the beginning of the array, and hence has zero offset

12

Declaring Arrays

• Declaring arrays in C differs slightly compared to Java

• Syntax for declaring a one-dimensional array:

• Example:
– We declare an array named data of float type and size 4 as:

– It can hold 4 floating-point values

• The size and type of arrays cannot be changed after their declaration!
• Array size is fixed at compile-time, cannot be changed during run-time

data_type array_name[size];

float data[4];

13

Initializing Arrays (1)

• Arrays can be initialized one-by-one

• For example:

• In the case of large arrays this method is inefficient

float data[4];
data[0] = 22.5;

data[1] = 23.1;
data[2] = 23.7;
data[3] = 24.8;

14

Initializing Arrays (2)
• Arrays can be also initialized when they are declared (just as any other

variables):

• An array may be partially initialized, by providing fewer data items than the
size of the array

– The remaining array elements will be automatically initialized to zero

• If an array is to be completely initialized, the dimension (size) of the array is
not required

– The compiler will automatically size the array to fit the initialized data

float data[4] = {22.5, 23.1, 23.7, 24.8};

float data[4] = {22.5, 23.1};

float data[] = {22.5, 23.1, 23.7, 24.8};

15

Arrays and Loops

• Arrays are commonly used in conjunction with loops
– in order to perform the same calculations on all (or some part) of the data items in the array:

int idx = 0;
while(idx < 10) {

/* do something with array[idx] */
idx++;

}

for (int idx = 0; idx < 10; idx++){
/* do something with array[idx] */

}

int array[10] = {1, 2};

16

Off-By-One Error

• The most common mistake when working with arrays in C is forgetting
that indices start at 0 and stop one less than the array size
– We often refer to this issue as “off-by-one error”

• The compiler does not control the limits of the array!

• This type of error can be detected using static code analysis
– For example using the cppcheck tool

int data[]={1,2,3,4,5}; /* number of elements is 5 */
for (int idx = 0; idx <= 5; idx++){

/* do something with data[idx] */
}

17

Determining Size of Array

• The size of an array can be determined using the sizeof()
operator

• It will return the number of bytes the array "occupies" in the
memory

• To determine the number of elements in the array, the returned
value must be divided by the number of bytes reserved for the
data type !

18

Determining Size of Array

int data[] = {1, 2, 3, 4, 5};
int bytes, len;

/* Print number of bytes used by array */
bytes = sizeof(data);
printf("Bytes used: %d\n", bytes);

/* Print number of elements or items in array */
len = sizeof(data)/sizeof(int);
printf("Number of items: %d\n", len);

/* To traverse array, use number of elements as limit */
for (int idx = 0; idx < len; idx++) {

/* do some stuff on element data[idx] */
}

19

Passing 1D Arrays to Functions (1)

• Passing a single array element to a function
– can be passed in a similar manner as passing a variable to a function

void display(int a) {
printf("%d", a);

}

int main(void) {
int age[] = { 18, 19, 20 };

display(age[2]); /* Passing element age[2] only */

return 0;
}

20

Passing 1D Arrays to Functions (2)

• Passing an entire array to a function
• When passing an array as an argument to a function, it is passed by its

memory address (starting address of the memory area) and not its value!

float average(int a[]) {
int sum = 0;
for (int i = 0; i < 6; ++i)

sum += a[i];
float avg = ((float)sum / 6);
return avg;

}
int main(void) {

int age[] = {18,19,20,21,22,23};
float avg = average(age);
printf("Average age=%.2f\n", avg);

}
21

Multi-dimensional Arrays

• In C, you can create array of an array known as multidimensional
array

• The simplest interpretation of a multi-dimensional array is a table,
i.e. a two-dimensional array
– each row has the same number of columns

22

Two-Dimensional Arrays Overview (1)

rows: 3

columns: 5 size of array: 15

23

Two-Dimensional Arrays Overview (2)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

array of ints

24

Two-Dimensional Arrays Overview (3)

1.0 2.0 3.0 4.0 5.0

6.0 7.0 8.0 9.0 10.0

11.0 12.0 13.0 14.0 15.0

array of floats

25

0 e l l o

1 W o r l

2 ? !

0 1 2 3 4

W o r l

d ? !

Two-Dimensional Arrays Overview (4)

H e l l o

W o r l

d ? !

size of array: 15

array elements

element at row 3 column 4
array[2][3]

26

Two-Dimensional Arrays
• Declaring a char array with 3 rows and 5 columns

– The array can hold 15 char elements

• Accessing a value

• Modifying a value

• The array can be initialized in one of the following ways

– The number of columns must be explicitly stated. The compiler will find the
appropriate amount of rows based on the initializer list

char two_d[3][5];

char ch;
ch = two_d[2][4];

two_d[0][0] = 'x';

int two_d[2][3] = {{5, 2, 1}, {6, 7, 8}};
int two_d[2][3] = {5, 2, 1 , 6, 7, 8};
int two_d[][3] = {{5, 2, 1}, {6, 7, 8}};

27

Passing 2D Arrays to Functions (1)

• Passing a single array element to a function
– can be passed in a similar manner as passing a variable to a function

void display(int a) {
printf("%d", a);

}

int main(void) {
int age[2][3] = { {18, 19, 20}, {21, 22, 23} };

display(age[1][2]); /* Passing element age[1][2] only */

return 0;
}

28

Passing 2D Arrays to Functions (2)

• Passing an entire array to a function
• When passing an array as an argument to a function, it is passed by its

memory address (starting address of the memory area) and not its value!

void enterData(int d[][10]) {
/* Code for reading and saving data into 2D array */

}

int main(void)
{

int data[10][10];

enterData(data);
}

29

What is String in C?

• C language does not support strings as a basic data type

• A C string is just an array that contains ASCII characters terminated
by the null character '\0'

• A C string is stored in an array of chars

H i 2 4 1 ! ! \0 "Hi 241 !!"

H i 2 4 1 !
Not a valid string

30

String Length

• Number of bytes/characters excluding the null character

• strlen() function in <string.h> returns the string length

H i 2 4 1 ! ! \0

Entire string occupies 10 bytes

String length = 9 bytes

31

String Literal vs String Variable

• In C, we distinguish between string literals and string variables

• A string literal refers to the string constant value which is stored in
the read-only memory area of the program

• A string variable refers to a string that is stored in an array which
can be modified

32

String Literal (1)

• Enclosed in double quotes (") and can contain character literals
(plain and escape characters)

• Can be broken up into multiple lines (each line ends with \) or
separated by whitespaces

"Hello, world"

"Hello, \
world"

"Hello" ", " "world"

33

String Literal (2)

• String literals may contain as few as one or even zero characters

• Do not confuse a single-character string literal, e.g. "A" with a
character constant, 'A'

• The former is actually two characters, because of the null-
terminator stored at the end

• An empty string, "", consists of only the null-terminator, and is
considered to have a string length of zero, because the null-
terminator does not count when determining string lengths

34

String Literal (3)

• String literals are passed to functions as pointers to a stored string.
For example, given the statement:

– The string literal "Hello world!\n" will be stored somewhere in memory,
and the address will be passed to printf()

– The first argument to printf() is actually defined as a char *

• We will revisit this when we talk about pointers

printf("Hello world!\n");

35

Operations on String Literals

• String literals may be subscripted

• Attempting to modify a string literal results in undefined behaviour,
and may cause problems in different ways depending on the
compiler, e.g.

printf("%c\n", "Hello"[2]); /* will print 'l' */

"Hello"[2] = 'e';

36

Symbolic String Constants

• Similar to integer and float symbolic constants, symbolic string
constants can be declared using const qualifier or #define pre-
processor

37

const char *MSG = "Hello, world";
const char *MSG_A = "Hello, \
world";
const char *MSG_B = "Hello" ", " "world";

#define MSG "Hello, world";
#define MSG_A "Hello, \
world"
#define MSG_B "Hello" ", " "world"

Next Lecture

• Strings (cont.)

• Structures

38

