
Week 3 Lecture 1

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Content

• Strings (cont.)

• Structures

2

Recap: What is String in C?

• C language does not support strings as a basic data type

• A C string is just an array that contains ASCII characters terminated
by the null character '\0'

• A C string is stored in an array of chars

H i 2 4 1 ! ! \0 "Hi 241 !!"

H i 2 4 1 !
Not a valid string

3

Recap: String Length

• Number of bytes/characters excluding the null character

• strlen() function in <string.h> returns the string length

H i 2 4 1 ! ! \0

Entire string occupies 10 bytes

String length = 9 bytes

4

String Literal vs String Variable

• In C, we distinguish between string literals and string variables

• A string literal refers to the string constant value which is stored in
the read-only memory area of the program

• A string variable refers to a string that is stored in an array which
can be modified

5

String Literal (1)

• Enclosed in double quotes (") and can contain character literals
(plain and escape characters)

• Can be broken up into multiple lines (each line ends with \) or
separated by whitespaces

"Hello, world"

"Hello, \
world"

"Hello" ", " "world"

6

String Literal (2)

• String literals may contain as few as one or even zero characters

• Do not confuse a single-character string literal, e.g. "A" with a
character constant, 'A'

• The former is actually two characters, because of the null-
terminator stored at the end

• An empty string, "", consists of only the null-terminator, and is
considered to have a string length of zero, because the null-
terminator does not count when determining string lengths

7

String Literal (3)

• String literals are passed to functions as pointers to a stored string.
For example, given the statement:

– The string literal "Hello world!\n" will be stored somewhere in memory,
and the address will be passed to printf()

– The first argument to printf() is actually defined as a char *

• We will revisit this when we talk about pointers

printf("Hello world!\n");

8

Operations on String Literals

• String literals may be subscripted

• Attempting to modify a string literal results in undefined behaviour,
and may cause problems in different ways depending on the
compiler, e.g.

printf("%c\n", "Hello"[2]); /* will print 'l' */

"Hello"[2] = 'e';

9

Symbolic String Constants

• Similar to integer and float symbolic constants, symbolic string
constants can be declared using const qualifier or #define pre-
processor

10

const char *MSG = "Hello, world";
const char *MSG_A = "Hello, \
world";
const char *MSG_B = "Hello" ", " "world";

#define MSG "Hello, world";
#define MSG_A "Hello, \
world"
#define MSG_B "Hello" ", " "world"

String Variables

• String variables are stored as arrays of chars, terminated by the
null character

• A string variable can be initialized in 2 ways using the methods
discussed in previous lecture:

char str[10];
str[0] = 'H';

str[1] = 'e';
str[2] = 'l';
str[3] = 'l';
str[4] = 'o';
str[5] = ' ';
str[6] = '!';
str[7] = '\0';

char str[10] = {'H', 'e', 'l',
'l', 'o', ' ', '!', '\0' };

11

Efficient String Variable Initialization

• Another way to initialize a char array to hold a string variable:
assign a string literal to the array during declaration

char str[10] = "Hello !";

char str[] = "Hello !";

What’s the difference between the two?
12

Arrays and C Strings

H e l l o !

array size: 10

array of chars

0 1 2 3 4 5 6 7 8 9 indices

length of string

H e l l o ! \0

null-terminator
str[7]

string

char str[10]

char str[10] = "Hello !";

13

Arrays and C Strings

array size: 8

array of chars

0 1 2 3 4 5 6 7 indices

length of string

H e l l o ! \0

null-terminator
str[7]

string

char str[]

char str[] = "Hello !";

14

Assigning a string after array declaration

char str[10];
…

str = "Hello !"; Illegal! Use strcpy() function

char str[10];
…

strcpy(str, "Hello !");

15

Null Terminator

• A string is an array of characters that ends with the first occurrence
of '\0'

• What comes after the end of the string doesn't matter, since the
string has ended

char str[] = "One\0Two";
printf("%s\n", str);

• The program will print only the string “One”

– The '\0' character terminates the string

– What comes after, does not matter

• The array will contain 8 elements

16

Displaying Strings: printf()

• Strings can be displayed on the screen using printf()

• The precision ('%.N') parameter limits the length of longer strings to at most N

• The width ('%N') parameter can be used to print a short string in a long space,
at least N characters

printf("%s\n", str);

printf("%.5s\n", "abcdefg");
// only "abcde" will be displayed

printf("%5s\n", "abc");
// prints " abc". Note the leading
// two spaced at the beginning.

17

Displaying Strings: puts()

• The puts() function writes the string out to standard output and
automatically appends a newline character at the end

• The output will be:

char str[] = "This is an ";
printf("%s", str);
puts("example string.");
printf("See??\n");

18

This is an example string.

See??

Reading in strings – scanf()

• The standard format specifier for reading strings with scanf() is
%s that the '&' is not required in the case of strings, since the
string is a memory address itself

• scanf() appends a '\0' to the end of the character string stored

• scanf() does skip over any leading whitespace characters in
order to find the first non-whitespace character

19

Reading in strings – scanf()

• The width field can be used to limit the maximum number of
characters to read from the input

• You should use one character less as input than the size of the array
used for holding the result

char str[6];
printf("Hi\n");
scanf("%5s", str);

// If you enter "HelloBello123xyz", only the
// first 5 characters will be read and a
// concluding '\0' will be put at the end

printf("%s\n", str);
20

Reading in strings – scanf()

• scanf() reads in a string of characters, only up to the first whitespace
character

– it stops reading when it encounters a space, tab, or newline character

• C supports a format specification known as the edit set conversion code
%[...]

– it can be used to read a line containing a variety of characters, including white
spaces

char str[20];
printf("Enter a string:\n");
scanf("%[^\n]", str);
printf("%s\n",str);

21

Reading in strings – scanf()

• Always use the width field to limit the maximum number of
characters to read with "%s" and "%[...]" in all production
quality code!

– No exceptions!

22

Reading in strings – gets()

• gets() is used to scan a line of text from a standard input device,
until a newline character input

• The string may include white space characters

• The newline character won't be included as part of the string

• '\0' is always appended to the end of the string of stored
characters

23

Reading in strings – gets()

• gets() has no provision for limiting the number of characters to
read

– This can lead to overflow problems!

char str[15];
printf("Enter your name: \n");
gets(str);
printf("%s\n", str);

24

Reading strings character by character

• Read in character by character is useful when

– you don't know how long the string might be,

– or if you want to consider other stopping conditions besides spaces and
newlines

• e.g. stop on periods, or when two successive slashes, //, are
encountered.

• The scanf() format specifier for reading individual characters is %c

• If a width greater than 1 is given (%2c), then multiple characters are
read, and stored in successive positions in a char array

25

sscanf() and sprintf() functions

• scanf() and printf() functions are used to read from and write
to the standard input/output

• sscanf() and sprintf() are used for the same goal but instead
of the standard input/output, they use strings

• One of their main advantage is when you need to prepare a string
for later use

26

The <ctype.h> header

• <ctype.h> declares a set of functions to classify and transform
individual chars
– #include <ctype.h> is required to use any of these functions

– https://www.tutorialspoint.com/c_standard_library/ctype_h.htm
documents the library

27

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

The <ctype.h> header

• Some of the more commonly used functions:
– isupper() – checks if a character is an uppercase letter

• A value different from zero is returned if the character is an uppercase alphabetic
letter, zero otherwise

– islower() – checks if a character is a lowercase letter

• A value different from zero is returned if the character is a lowercase alphabetic
letter, zero otherwise

– toupper() – converts a character to its uppercase equivalent if the character is an
lowercase letter and has an uppercase equivalent

• If no such conversion is possible, the returned value is unchanged

– tolower() – converts a character to its lowercase equivalent if the character is an
uppercase letter and has a lowercase equivalent

• If no such conversion is possible, the returned value is unchanged

28

The <string.h> header

• <string.h> defines several functions to manipulate null-byte
terminated arrays of chars

– #include <string.h> is required to use any of these functions

– https://www.tutorialspoint.com/c_standard_library/string_h.htm
documents the library

29

https://www.tutorialspoint.com/c_standard_library/string_h.htm

The <string.h> header

• Some of the more commonly used functions:

– strcpy() – copies a string from source to destination

– strcat() – concatenates (appends) source to the end of destination

– strlen() – returns length of the string, not counting the ‘\0’

– strcmp() – compares strings str1 and str2, up until the first encountered
null-term
• Returns zero if the two strings are equal

• Returns a positive value (1?) if the first encountered difference has a larger value
in str1 than str2

• Returns a negative value (-1?) if the first encountered difference has a smaller
value in str1 than str2

30

The <stdlib.h> header

• stdlib.h defines several functions, including searching, sorting and
converting
– #include <stdlib.h> is required to use any of these functions

– https://www.tutorialspoint.com/c_standard_library/stdlib_h.htm documents
the library

• Some of the more commonly used functions:
– atoi(), atof(), atol(), atoll() – parses a string of numeric characters

into a number of type int, double, long int, or long long int, respectively

31

https://www.tutorialspoint.com/c_standard_library/stdlib_h.htm

Structures

32

Background

 Basic data types

 int : integer ✓

 char : character ✓

 float : floating point number ✓

 double : double-precision floating point number ✓

 Derived data types

 Arrays ✓

 Strings ✓

 Structures

33

Structures

 A struct is a derived data type composed of members that are
each basic or derived data types

 A single struct would store the data for one object. An array of
structs would store the data for several objects

 A struct can be defined in several ways as illustrated in the
following examples

34

Declaring a Structure

 Syntax of the structure type declaration:

 structure_tag specifies the name of the structure

 structure_tag and variable_list are optional

 If structure_tag is not specified, variable_list should be specified;
otherwise, there is no way to declare variables using the unnamed structure
type

struct structure_tag {
type1 member1;
type2 member2;
...

} variable_list;

35

Declaring a Structure

 Syntax of the structure type declaration:

 Structure members can be

 Basic data types

 Derived and user-defined types

 Pointers to basic, derived and user-defined data types

 Function pointers

struct structure_tag {
type1 member1;
type2 member2;
...

} variable_list;

36

Examples

 struct declaration that only defines a type:

 struct declaration that defines a type and reserves storage for
variables:

37

struct student_info { // named struct
char name [20];
int student_id;
int age;

}; // does not reserve any space

struct student_info { // named struct
char name [20];
int student_id;
int age;

} s, t; // reserves space for s and t

Examples

 Declaring a variable struct current_student

 Above statement reserves space for:

 20 character array,

 integer to store student ID, and

 integer to store age

38

struct student_info current_student;

Examples

 Declaring array of structures to store information of enrolled
students in a class

 Reserves space for 250 element array of records (structs) for
students enrolled in NWEN241.

39

struct student_info nwen241class[250];

Next Lecture

• Structures

• Pointers

40

