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Admin Stuff

• Gentle reminder: Assignment #1 is due on 13 days from now (25 
March 2024 23:59)

• You should have completed the first task by now…

• If you don’t want to                  don’t wait until next week to get started
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Content

• Structures

• Pointers
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Recap: Declaring a Structure

 Syntax of the structure type declaration:

 structure_tag specifies the name of the structure

 structure_tag and variable_list are optional

 If structure_tag is not specified, variable_list should be specified; 
otherwise, there is no way to declare variables using the unnamed structure 
type

struct structure_tag {
type1 member1;
type2 member2;
...

} variable_list;
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Declaring a Structure

 Syntax of the structure type declaration:

 Structure members can be

 Basic data types

 Derived and user-defined types

 Pointers to basic, derived and user-defined data types

 Function pointers

struct structure_tag {
type1 member1;
type2 member2;
...

} variable_list;
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Examples

 struct declaration that only defines a type:

 struct declaration that defines a type and reserves storage for 
variables:
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struct student_info { // named struct
char name [20];
int student_id;
int age;

}; // does not reserve any space

struct student_info { // named struct
char name [20];
int student_id;
int age;

} s, t; // reserves space for s and t



Examples

 Declaring a variable struct current_student

 Above statement reserves space for:

 20 character array, 

 integer to store student ID, and 

 integer to store age
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struct student_info current_student;



Examples

 Declaring array of structures to store information of enrolled 
students in a class

 Reserves space for 250 element array of records (structs) for 
students enrolled in NWEN241.
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struct student_info nwen241class[250];



Creating New User Defined Types

 Instead of writing struct student_info every time we declare a variable, 
we can define it as a new data type

 This makes StudentInfo a new user-defined type, and you can declare a 
variable as follows:
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typedef struct { 
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo current_student;



Initializing at Declaration (1)

• It is possible to initialize a struct at declaration

• Order of initializer values should follow order of declaration
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typedef struct { 
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo current_student = 
{ "John Doe", 12345, 18 };



Initializing at Declaration (1)

• Partial initialization is also possible

• Remaining fields will be set to 0
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typedef struct { 
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo current_student = 
{"John Doe", 12345 };



Initializing at Declaration (2)

• It is possible to initialize certain fields of struct using designated 
initialization

• Initialization can be in any order
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typedef struct { 
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo s1 = { .age = 18, .name = "John Doe" };
// or StudentInfo s1 = { age: 18, name: "John Doe" };



New struct and Data Type

 If struct student_info has been previously defined, then we 
can create a new data type using typedef :
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typedef struct student_info StudentInfo;



Accessing and Manipulating structs

 We can reference a component of a structure by the direct 
component selection operator, which is a period, e.g.

 The direct component selection operator has level 1 priority in 
the operator precedence

 Copying of an entire structure can be easily done by the 
assignment operator
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strcpy(student1.name, "John Smith");
student1.age = 18;
printf("%s is in age %d\n", student1.name, student1.age);

student2 = student1;



Example – struct and typedef (1)

15

#include <stdio.h>

#include <string.h>

int main() {

typedef struct student_info {

char name[20];

int student_id;

int age;

} StudentInfo;

StudentInfo current_student;     // declare new variable using

// new type StudentInfo

struct student_info new_student; // declare using struct format

// do stuff – see next slide



Example – struct and typedef (2)
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// declarations in previous slide

// initialize new student record

strcpy(new_student.name , "John Smith");

new_student.student_id = 300300300;

new_student.age = 22;

// copy new_student to current_student

current_student = new_student;

printf("Student name : %s\n", current_student.name);

printf("Student ID : %.9d\n", current_student.student_id);

printf("Student Age : %d\n", current_student.age);

}



Passing struct to Functions (1)

 Suppose there is a structure defined as follows
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typedef struct {
char name[20];
double diameter;
int moons;
double orbit_time, rotation_time;

} planet_t;



Passing struct to Functions (2)

 When a structure variable is passed as an input argument to a 
function, all its component values are copied into the local 
structure variable
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Passing struct to Functions (3)

 Passing entire copy of a structure can be inefficient, especially for 
large structs

 There is a better way to pass structs to functions using pointers
 To be discussed later
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Pointers
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Memory Location

• All information accessible to a running computer program are 
stored somewhere in the computer's memory

21

1 memory location

...

Every memory 
location is identified 
by an address

1000

1001

1002

1003

1004

1005



Memory Location

• How big is 1 memory location?
– It depends on the computer memory architecture
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Word-addressable architecture:
• Every memory location corresponds to one word

Byte-addressable architecture:
• Every memory location corresponds to one byte

Most computers today have byte-addressable memory

1 memory location1000



Memory Location

• How big is the address?
– It depends on the number of bits used by CPU for addressing

• Example:
– In a computer that uses 32 bits for addressing, an address has 32 bits

– If the computer has byte-addressable memory, then the memory space is 2
32

bytes = 4 gigabytes
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1 memory location1000



Memory Location and Variables

• A variable declaration allocates memory to store the value of the 
variable
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'A'

...

...

1000

1001

1002

1003

1004

1005

1001
char c = 'A';

Memory location 1001 
contains value of 
variable c

A variable directly references 
a value



Memory Location and Variables

• In a byte-addressable computer, how do we address a data that 
occupies more than 1 byte, e.g., int, float or double?
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...

The address of a multi-
byte data is the starting 
address
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Memory Location and Variables

• In a byte-addressable computer, how do we address arrays?
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...

The address of an array 
is the starting address 
of the first element

1000
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Memory Location and C

• C provides the ability to access specific memory locations, using 
pointers
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Pointers are variables that contain memory addresses as their 
values

A variable directly references a value

A pointer indirectly references a value

Variable vs Pointer



Next Lecture

• More Pointers
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