Week 3 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz



Admin Stuff

* Gentle reminder: Assignment #1 is due on 13 days from now (25
March 2024 23:59)

* You should have completed the first task by now...

* If you don’t want to don’t wait until next week to get started



Content

e Structures
* Pointers



Recap: Declaring a Structure

e Syntax of the structure type declaration:

struct structure tag A
typel memberl;
type2 member2;

} variable Llist;

- structure_tag specifiesthe name of the structure
- structure_tag andvariable List areoptional

- Ifstructure_tag is not specified, variable L1ist should be specified;
otherwise, there is no way to declare variables using the unnamed structure

type



Declaring a Structure

e Syntax of the structure type declaration:

struct structure tag A
typel memberl;
type2 member2;

} variable Llist;
e Structure members can be

~- Basic data types

~ Derived and user-defined types

- Pointers to basic, derived and user-defined data types
— Function pointers



Examples

e struct declaration that only defines a type:
struct student _info { // named struct
char name [20];
int student id;
int age;
}; // does not reserve any space

e struct declaration that defines a type and reserves storage for

variables:
struct student _info { // named struct
char name [20];
int student id;
int age;
} s, t; // reserves space for s and t



Examples

e Declaring avariable struct current_student

struct student info current_ student;

e Above statement reserves space for:

— 20 character array,
— integer to store student ID, and
— Integer to store age



Examples

e Declaring array of structures to store information of enrolled
studentsin a class

struct student _info nwen24lclass[250];

e Reserves space for 250 element array of records (structs) for
students enrolled in NWEN241.



Creating New User Defined Types

e Instead of writing struct student info everytime we declare a variable,
we can define it as a new data type

typedef struct {
char name [20];
int student id;
int age;

} StudentInfo;

e This makes StudentInfo anew user-defined type, and you can declare a
variable as follows:

StudentInfo current student;



Initializing at Declaration (1)

* Itis possible to initialize a struct at declaration

typedef struct {
char name [20];
int student id;
int age;

} StudentInfo;

StudentInfo current student =
{ "John Doe", 12345, 18 };

e Order of initializer values should follow order of declaration

10



Initializing at Declaration (1)

* Partial initialization is also possible

typedef struct {
char name [20];
int student id;
int age;

} StudentInfo;

StudentInfo current student =
{"John Doe", 12345 };

* Remaining fields will be setto 0

11



Initializing at Declaration (2)

* Itis possible to initialize certain fields of struct using designated
initialization

typedef struct {
char name [20];
int student id;
int age;

} StudentInfo;

StudentInfo s1 = { .age = 18, .name = "John Doe" };
// or StudentInfo sl = { age: 18, name: "John Doe" };

* Initialization can be in any order

12



New struct and Data Type

e If struct student info has been previously defined, then we
can create a new data type using typedef :

typedef struct student info StudentInfo;

13



Accessing and Manipulating structs

e We can reference a component of a structure by the direct
component selection operator, which is a period, e.g.

strcpy(studentﬂ]name, "John Smith");
studentﬂ]age = 18;
printf("%s is in age %d\n", studentﬂ]name, studentﬂ]age);

e The direct component selection operator has level 1 priority in
the operator precedence

e Copying of an entire structure can be easily done by the
assignment operator

student2 = studentl;

14



Example - struct and typedef (1)

#include <stdio.h>
#include <string.h>

int main() {

typedef struct student info {
char name[20];
int student id;
int age;

} StudentInfo;

StudentInfo current_student; // declare new variable using
// new type StudentInfo

struct student_info new_student; // declare using struct format

// do stuff - see next slide



Example - struct and typedef (2)

// declarations in previous slide

// initialize new student record
strcpy(new_student.name , "John Smith");
new_student.student id = 300300300;
new_student.age = 22;

// copy new_student to current_ student
current_student = new_student;

printf("Student name : %s\n", current_student.name);
printf("Student ID : %.9d\n", current_student.student _id);
printf("Student Age : %d\n", current _student.age);

16



Passing struct to Functions (1)

e Suppose there is a structure defined as follows

typedef struct {

char name[20];

double diameter;

int moons;

double orbit time, rotation_ time;
} planet t;

17



Passing struct to Functions (2)

e When a structure variable is passed as an input argument to a
function, all its component values are copied into the local
structure variable

1. /*

2. * Displays with labels all components of a planet t structure

S */

4. void

5. print planet(planet t pl) /* input - one planet structure */

6. {

7. printf("%s\n", pl.name);

8. printf(" Eguatorial diameter: %.0f km\n", pl.diameter);

9. printf(" Number of moons: %d\n", pl.moons);

10. printf(" Time to complete one orbit of the sun: %.2f years\n",
11. pl.orbit time);

12. printf(" Time to complete one rotation on axis: %.4f hours\n",
13. pl.rotation time);

18



Passing struct to Functions (3)

e Passing entire copy of a structure can be inefficient, especially for
large structs

e Thereis a better way to pass structs to functions using pointers
e To bediscussed later

19



Pointers



Memory Location

* All information accessible to a running computer program are
stored somewhere in the computer's memory

1000 | 1 memory location
Every memory 1001
location is identified 1002
by an address 1003

1004

1005




Memory Location

1000 (

1 memory location

* How bigis 1 memory location?
— It depends on the computer memory architecture

Word-addressable architecture:

* Every memory location corresponds to one word

Byte-addressable architecture:

* Every memory location corresponds to one byte

Most computers today have byte-addressable memory




Memory Location

* How bigis the address?

1000

1 memory location

— It depends on the number of bits used by CPU for addressing

 Example:

— Ina computer that uses 32 bits for addressing, an address has 32 bits

— If the computer has byte-addressable memory, then the memory space is 2

bytes =4 gigabytes

32

23



Memory Location and Variables

* Avariable declaration allocates memory to store the value of the
variable

_ AT 1000

char ¢ = 'A’; e o
Memory location 1001 1002
contains value of 1003
variable c 1004
1005

A variable directly references
a value



Memory Location and Variables

* |n a byte-addressable computer, how do we address a data that
occupies more than 1 byte, e.g., int, float or double?

1000
The address of a multi- 1001
byte data is the starting 1002
address 1003
1004
1005




Memory Location and Variables

* In a byte-addressable computer, how do we address arrays?

1000
The address of an array 1001
is the starting address 1002
of the first element 1003
1004

1005

26



Memory Location and C

* C provides the ability to access specific memory locations, using
pointers

Pointers are variables that contain memory addresses as their
values

Variable vs Pointer

A variable directly references a value

A pointer indirectly references a value

27



Next Lecture

e More Pointers

28



