
Week 3 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Admin Stuff

• Gentle reminder: Assignment #1 is due on 13 days from now (25
March 2024 23:59)

• You should have completed the first task by now…

• If you don’t want to don’t wait until next week to get started

2

Content

• Structures

• Pointers

3

Recap: Declaring a Structure

 Syntax of the structure type declaration:

 structure_tag specifies the name of the structure

 structure_tag and variable_list are optional

 If structure_tag is not specified, variable_list should be specified;
otherwise, there is no way to declare variables using the unnamed structure
type

struct structure_tag {
type1 member1;
type2 member2;
...

} variable_list;

4

Declaring a Structure

 Syntax of the structure type declaration:

 Structure members can be

 Basic data types

 Derived and user-defined types

 Pointers to basic, derived and user-defined data types

 Function pointers

struct structure_tag {
type1 member1;
type2 member2;
...

} variable_list;

5

Examples

 struct declaration that only defines a type:

 struct declaration that defines a type and reserves storage for
variables:

6

struct student_info { // named struct
char name [20];
int student_id;
int age;

}; // does not reserve any space

struct student_info { // named struct
char name [20];
int student_id;
int age;

} s, t; // reserves space for s and t

Examples

 Declaring a variable struct current_student

 Above statement reserves space for:

 20 character array,

 integer to store student ID, and

 integer to store age

7

struct student_info current_student;

Examples

 Declaring array of structures to store information of enrolled
students in a class

 Reserves space for 250 element array of records (structs) for
students enrolled in NWEN241.

8

struct student_info nwen241class[250];

Creating New User Defined Types

 Instead of writing struct student_info every time we declare a variable,
we can define it as a new data type

 This makes StudentInfo a new user-defined type, and you can declare a
variable as follows:

9

typedef struct {
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo current_student;

Initializing at Declaration (1)

• It is possible to initialize a struct at declaration

• Order of initializer values should follow order of declaration

10

typedef struct {
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo current_student =
{ "John Doe", 12345, 18 };

Initializing at Declaration (1)

• Partial initialization is also possible

• Remaining fields will be set to 0

11

typedef struct {
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo current_student =
{"John Doe", 12345 };

Initializing at Declaration (2)

• It is possible to initialize certain fields of struct using designated
initialization

• Initialization can be in any order

12

typedef struct {
char name [20];
int student_id;
int age;

} StudentInfo;

StudentInfo s1 = { .age = 18, .name = "John Doe" };
// or StudentInfo s1 = { age: 18, name: "John Doe" };

New struct and Data Type

 If struct student_info has been previously defined, then we
can create a new data type using typedef :

13

typedef struct student_info StudentInfo;

Accessing and Manipulating structs

 We can reference a component of a structure by the direct
component selection operator, which is a period, e.g.

 The direct component selection operator has level 1 priority in
the operator precedence

 Copying of an entire structure can be easily done by the
assignment operator

14

strcpy(student1.name, "John Smith");
student1.age = 18;
printf("%s is in age %d\n", student1.name, student1.age);

student2 = student1;

Example – struct and typedef (1)

15

#include <stdio.h>

#include <string.h>

int main() {

typedef struct student_info {

char name[20];

int student_id;

int age;

} StudentInfo;

StudentInfo current_student; // declare new variable using

// new type StudentInfo

struct student_info new_student; // declare using struct format

// do stuff – see next slide

Example – struct and typedef (2)

16

// declarations in previous slide

// initialize new student record

strcpy(new_student.name , "John Smith");

new_student.student_id = 300300300;

new_student.age = 22;

// copy new_student to current_student

current_student = new_student;

printf("Student name : %s\n", current_student.name);

printf("Student ID : %.9d\n", current_student.student_id);

printf("Student Age : %d\n", current_student.age);

}

Passing struct to Functions (1)

 Suppose there is a structure defined as follows

17

typedef struct {
char name[20];
double diameter;
int moons;
double orbit_time, rotation_time;

} planet_t;

Passing struct to Functions (2)

 When a structure variable is passed as an input argument to a
function, all its component values are copied into the local
structure variable

18

Passing struct to Functions (3)

 Passing entire copy of a structure can be inefficient, especially for
large structs

 There is a better way to pass structs to functions using pointers
 To be discussed later

19

Pointers

20

Memory Location

• All information accessible to a running computer program are
stored somewhere in the computer's memory

21

1 memory location

...

Every memory
location is identified
by an address

1000

1001

1002

1003

1004

1005

Memory Location

• How big is 1 memory location?
– It depends on the computer memory architecture

22

Word-addressable architecture:
• Every memory location corresponds to one word

Byte-addressable architecture:
• Every memory location corresponds to one byte

Most computers today have byte-addressable memory

1 memory location1000

Memory Location

• How big is the address?
– It depends on the number of bits used by CPU for addressing

• Example:
– In a computer that uses 32 bits for addressing, an address has 32 bits

– If the computer has byte-addressable memory, then the memory space is 2
32

bytes = 4 gigabytes

23

1 memory location1000

Memory Location and Variables

• A variable declaration allocates memory to store the value of the
variable

24

'A'

...

...

1000

1001

1002

1003

1004

1005

1001
char c = 'A';

Memory location 1001
contains value of
variable c

A variable directly references
a value

Memory Location and Variables

• In a byte-addressable computer, how do we address a data that
occupies more than 1 byte, e.g., int, float or double?

25

...

The address of a multi-
byte data is the starting
address

1000

1001

1002

1003

1004

1005

1001

Memory Location and Variables

• In a byte-addressable computer, how do we address arrays?

26

...

The address of an array
is the starting address
of the first element

1000

1001

1002

1003

1004

1005

1001

Memory Location and C

• C provides the ability to access specific memory locations, using
pointers

27

Pointers are variables that contain memory addresses as their
values

A variable directly references a value

A pointer indirectly references a value

Variable vs Pointer

Next Lecture

• More Pointers

28

