
Week 4 Lecture 1

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Content

• More on Pointers

2

Recap: Declaring a Pointer

• Pointers are typed based on the type of entity that they point to
– To declare a pointer, use * preceding the variable name as in:

– Examples:

3

data_type *name;

int *p; // p is a pointer to an int
float *q; // q is a float pointer
char *r; // r is a char pointer
int *s[5]; // s is an array of 5 int pointers

Recap: Graphical Illustration

Declaration:

int a = 1; int *x = NULL;

NULL – pointer literal/constant to non-existent address

Assignment:

x = &a;

1

a x NULL

1

a x

4

Recap: Usage of Pointers

1) Provide an alternative means of accessing information stored in
arrays

2) Provide an alternative (and more efficient) means of passing
parameters to functions

3) Enable dynamic data structures, that are built up from blocks of
memory allocated from the heap at run time

5

Pointers and Arrays (1)

• Arrays in C are pointed to, i.e. the variable that you declare for the
array is actually a fixed pointer to the first array element

• Example:

• z is a fixed pointer, it points to the address of the first element z[0]

• In other words, z == &z[0]

int z[10] = {1, 2, 3};

6

Pointers and Arrays (2)

• Array elements are usually accessed using [] (with the index)

• Pointers can also be used to access array elements

– z[0], ip[0], *z, or *ip can all be used to access the first
element of the array z

int z[10], *ip;
ip = &z[0];

7

Graphical Illustration

int z[10], *ip;
ip = &z[0];

ip

z

8

Graphical Illustration

int z[10], *ip;
ip = &z[0];
int z[10], *ip;
ip = &z[0];

ip

z

• z[0], ip[0] , *ip or *z can all be used
to access the first element of the array z

9

How To Access Next Element Using
Pointer?
• What about accessing z[1] using pointers ?

Is it *(ip+1)?

• Hmmm…

• Since ip is an address, adding 1 will
just point to the next byte

• But since the array consists of ints
(which are more than 1 byte), ip+1
will still point to a certain part of the
first element?

10

Pointer Arithmetic

• Addition and subtraction can be performed on pointers

• Suppose :

data_type *name;

name + k

name - k

Evaluated as

name + k*sizeof(data_type)

Evaluated as

name - k*sizeof(data_type)

11

Pointers and Arrays (3)

• Arrays in C are pointed to, i.e. the variable that you declare for the
array is actually a fixed pointer to the first array element

• Example:

• z is a fixed pointer, it points to the address of the first element z[0]

• In other words, z == &z[0]

• In general, z+i == &z[i]

int z[10] = {1, 2, 3};

12

Pointers and Arrays (4)

• Array elements are usually accessed using [] (with the index)

• Pointers can also be used to access array elements

– z[i], ip[i], *(z+i), or *(ip+i) can all be used to access the
ith element of the array z

int z[10], *ip;
ip = &z[0];

13

Graphical Illustration

int z[10], *ip;
ip = &z[0];
int z[10], *ip;
ip = &z[0];
ip++; // ip = ip + 1

ip

z

14

Graphical Illustration

int z[10], *ip;
ip = &z[0];
int z[10], *ip;
ip = &z[0];
ip++; // ip = ip + 1

ip

z

15

Traversing Arrays Using Pointers
The usual way to iterate over arrays:

Using pointers:

int a[] = { ... };
int len = sizeof(a)/sizeof(int);
for(int i = 0; i < len; i++) {

/* Do something about a[i] */
}

int a[] = { ... };
int len = sizeof(a)/sizeof(int);
for(int *ip = a; ip < a + len; ip++) {

/* Do something about *ip */
}

16

Traversing Arrays Using Pointers

ip

a
. . .

int a[] = { ... };
int len = sizeof(a)/sizeof(int);
for(int *ip = a; ip < a + len; ip++) {

/* Do something about *ip */
}

1st iteration:

17

Traversing Arrays Using Pointers

ip

a
. . .

int a[] = { ... };
int len = sizeof(a)/sizeof(int);
for(int *ip = a; ip < a + len; ip++) {

/* Do something about *ip */
}

2nd iteration:

18

Traversing Arrays Using Pointers

ip

a
. . .

int a[] = { ... };
int len = sizeof(a)/sizeof(int);
for(int *ip = a; ip < a + len; ip++) {

/* Do something about *ip */
}

3rd iteration:

19

Traversing Arrays Using Pointers

ip

a
. . .

int a[] = { ... };
int len = sizeof(a)/sizeof(int);
for(int *ip = a; ip < a + len; ip++) {

/* Do something about *ip */
}

(len-1)th iteration:

20

Pointer Arithmetic

Assume short is 2 bytes, and pointer variable (address size) is 4 bytes.
short a[10]={5, 10, 15, …};
short *pa;
int i=5;
pa = &a;

Variable Address Value

a 640 5

642 10

644 15

… …

pa 700 640

Expression Value Note

pa+1 642 640+1*2

pa

640700

a

5

10

15

640

642

644

646

648

650

Questions:

21

pa+3 646 640+3*2

pa+i 650 640+i*2

*pa+1 6 5+1

(pa+1) 10 a[1]=pa[1]=(a+1)

pa[2] 15 644

A Note on Operator Precedence

Slight correction:

These only refer to
prefix ++ and --

Postfix ++ and --
has level 1
precedence, i.e.,
the same as (), [], ->
and .

22

Increment and Indirection Together

• Suppose

• What does i = *ip++ mean?
– Since postfix ++ has higher precedence than *, the RHS expression evaluates

to *(ip++) which means

int *ip;
int i;

i = *ip; ip = ip + 1;

23

Increment and Indirection Together

• Suppose

• What does i = *++ip mean?
– Both prefix ++ and * have same precedence, so associativity (right to left) is

applied on RHS yielding *(++ip) which means

int *ip;
int i;

ip = ip + 1; i = *ip;

24

Increment and Indirection Together

• Suppose

• How to increment the value of whatever ip points to?

int *ip;
int i;

(*ip)++;

25

Pointer Types

• Pointer variables are generally of the same size, but it is
inappropriate to assign an address of one type of pointer variable
to a different type of pointer variable

• Example:

• Warning rather than error because C will allow you to do this (it is
appropriate in certain situations)

int V = 101;
float *P = &V; /* generally results in a warning */

26

Casting Pointers

• When assigning a memory address of a variable of one type to a
pointer that points to another type, it is best to use the cast
operator to indicate the cast is intentional (this will remove the
warning).

• Example:

• Removes warning, but is still unsafe to do this !!! You must know what you
are doing when casting pointers!

int V = 101;
float *P = (float *) &V;
/* Casts int address to float * */

27

General (void) Pointer

 A void * is considered to be a general pointer, it can point to
any type of pointer variable

 No cast is needed to assign an address to a void * or from a
void * to another pointer type

 Example:

 Certain library functions return void * results

int V = 101;
void *G = &V; /* No warning */
float *P = G; /* No warning, still unsafe */

28

Pointer to Pointer

• A pointer can also be made to point to a pointer variable (but the
pointer must be of a type that allows it to point to a pointer)

• Example:

29

int V = 101;
int *P = &V; /* P points to int V */
int **Q = &P; /* Q points to int pointer P */

printf("%d %d %d\n", V, *P, **Q);
/* prints 101 3 times */

Strings and Pointers

• Recall:
• A string in C is an array of chars terminated by the null character

• We can use a pointer to point to an array

• A char pointer can be used to point to a string

char str[] = "Hello, world";
char *vstr = str1;
char *lstr = "Hello, world";

vstr points to a string variable

lstr points to a string literal

vstr[0] = 'h';
lstr[0] = 'h';

Allowed since vstr points to a string variable
Not allowed since lstr points to a string literal

30

Strings ❤ Pointers
int strlen (char *s)
{
int n;
for(n=0; *s!='\0'; s++)
n++;

return n;
}

void strcpy(char *s, char *t)
{
while((*s=*t) != '\0') {
s++; t++;

}
}

void strcpy(char *s, char *t)
{
while((*s++=*t++) != '\0');

}

void strcpy(char *s, char *t)
{
int i = 0;
while((s[i]=t[i]) != '\0')
i++;

}

int strcmp(char *s, char *t)
{
int i;
for(i=0;s[i]==t[i];i++)
if(s[i] == '\0')
return 0;

return s[i] – t[i];
}

Notice in the second
strcmp() and second
and third strcpy(), the
use of pointers to iterate
through the strings

The conciseness of the last strcmp() and
strcpy() make them hard to understand

int strcmp(char *s, char *t)
{
for(;*s == *t; s++,t++)
if (*s == '\0')

return 0;
return *s - *t;

}

31

Next Lecture

• More Pointers

• Storage Classes

• C Process Layout

32

