Week 4 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz

Content

* More on Pointers
* Storage Classes

* C Process Layout

Recap: Usage of Pointers

1) Provide an alternative means of accessing information stored in
arrays

2) Provide an alternative (and more efficient) means of passing
parameters to functions

3) Enable dynamic data structures, that are built up from blocks of
memory allocated from the heap at run time

Structures and Pointers

* Astruct pointer can be used to pointto astruct
* Example:

typedef struct {
char name [20];
int student id;
int age;

} StudentInfo;

StudentInfo s

{ "John Doe", 12345, 20},
StudentInfo *sp =

&S;

© |l

Accessing and Manipulating struct Pointers

e We can reference a component of a structure pointer by the
indirect component selection operator, whichis a ->, e.g.

strcpy(spname, "John Smith");

sngage = 18;
printf("%s is in age %d\n", sp[}name, sp->bge);

¢ Theindirect component selection operator has level 1 priority in
the operator precedence

Passing Function Parameters

e Recall:

Function definition

int add (int
{

¥

return a + b;

Formal parameters

aL int

int 1
int k

Actual function call

Actual parameters

Call by Value

: : : int 1 =1, j = 2;
int add (int int |b|) : Y el
nt k = add(|i} ;
{ 1 ‘ ’ J
return a + b;
} Formal parameters Actual parameters

* The values of actual parameters (i, j) are copied to formal
parameters (a, b)

 Actual and formal parameters are separate entities

* What happens thereafter to formal parameters has no effect on
actual parameters

* Any changes on a, b will not be transferred back to i, j

Example

void swap(int a, int b)

int i = 5;
{ int j = 10;
int temp = a; swap(i, j);
a = b; printf("%d %d", i, j);
b = temp;
} Output

* After call to swap(), i and j values remain unchanged

* During execution of swap (), the copies of i and j are swapped
inside the function, but not i and j themselves!

The Solution: Call by Reference

* Pass a copy of the address to the function
* Both formal and actual parameters refer to the same address
* This can be done using pointers as function parameters

void swap(int *a, int *b) int i = 5;

{ int j = 10;
int temp = *a; swap(&i, &);
¥3 = *b; printf("%d %d", i, j);
*b = temp;

) €mp Output

Why Not Swap the Pointers?

void swap(int *a, int *b) int i = 5;

{ int j = 10;
int *temp = a; swap(&i, &);
a = b; printf("%d %d", i, j);
b = temp; Output

}

* Note that copies of the addresses are passed as formal parameters
 Variables a and b are local copies

* Doing so will only swap the local copies

Why Not Swap the Pointers?

void swap(int *a, int *b) int i = 5;

{ int j = 10;
int *temp = a; swap(&i, &);
a = b; printf("%d %d", i, j);
b = temp;

¥

11

Call by Reference for Efficiency

* Recall: When a structure
variable is passed as an input
argument to a function, all its
component values are copied
into the local structure variable

* Passing entire copy of a
structure can be inefficient,
especially for large structs

* For efficiency, pass a copy of
the address of structure to
function

* This can be done using
pointer to struct as function
parameter

typedef struct student _info {
char name[40];
int student id;
int age;

} StudentInfo;

void print_student(StudentInfo s)
{

printf("Name: %s\n", s.name);
printf("Student ID: %d\n", s.id);
printf("Age: %d\n", s.age);

StudentInfo s1 = {"John", 12345, 20};
print_student(sl);

Call by Reference for Efficiency

typedef struct student _info {
char name[40];
int student id;
int age;

} StudentInfo;

void print student(StudentInfo *s)
{

printf("Name: %s\n", s->name);
printf("Student ID: %d\n", s->id);
printf("Age: %d\n", s->age);

Copy of address of s1is
— passed instead of a copy

StudentInfo s1 = {"John", 12345, 20},
print_student(&sl); «—

of the entire structure s1

13

Call by Reference: Placing Restrictions

* print student() can
actually modify the value of s

void print_student(StudentInfo *s) « How to restrict function from
{ e .
S TR TR HENT BRI modifying parameters passed

printf("Student ID: %d\n", s->id); by reference?

printf(“Age: %d\n", s->age); Add const modifier to
s->age = 1000; parameter

14

Call by Reference: Placing Restrictions

* print student() can

actually modify the value of s
void print_student(const StudentInfo *s)

{ * How to restrict function from
printf("Name: %s\n", s->name); modifying parameters passed
printf("Student ID: %d\n", s->id); by reference?

printf("Age: %d\n", s->age);
* Add const modifier to
s->age = 1000; // compiler will not parameter
// allow this

15

Function Returning a Pointer

* Functions can return a pointer float *find_max(float A[], int N)

{
int 1i;
float *the_max = &(A[0]);
 Make sure that returned for (i = 1; i < Nj i) |
. . . if (A[i] > *the_max) the_max = &(A[i]);
pointer points to a valid return the_max;
memory location }
int main(void)
{

float scores[5] = {10.0, 8.0, 5.5, 2.0, 4.1};
float *max_score;

max_score = find max(scores, 5);

printf("%.1f\n", *max_score);
return 0;

16

Storage Classes

Variable Lifetime and Scope

Variables have lifetime™: it begins when the variable is allocated memory
and ends when the memory is “de-allocated”

Variables have scope: these are parts of the program where a variable is
visible

*Litetime is also known as storage duration

18

Lifetime

e Static

~ Astatic variable exists for the entire program execution duration; allocated
memory when program starts

e Automatic

— An automatic variable exists within a block that contains it; allocated
memory when execution enters the block and de-allocated when execution

leaves the block
e Dynamic

- Adynamic variable exists from allocation to de-allocation of memory;
allocation and de-allocation are done explicitly through dynamic memory
allocation function calls

Lifetime

Program start Program end

i

Block start Block end

Automatic
Explicit allocation Explicit deallocation

20

Scope

e Local
- Alocal variable is only visible inside the current, innermost block

e Global

— A global variable is visible in the whole compilation unit, from the line of
declaration to the end of file

e External

— An external variable is visible in all compilation units

21

Local Scope

filel.c

file2.cC

variable declaration

variable declaration

22

Global Scope

filel.c

file2.cC

variable declaration

variable declaration

23

External Scope

filel.c

file2.cC

variable declaration

24

Storage Classes at a Glance

C storage
class

auto

static

extern

register

Declaration

Inside block

Inside block

Outside any
block

Outside any
block

Inside block

Default init
value

Garbage

Garbage

Init frequency

Every time block
is entered

Once at program
start

Once at program
start

Once at program
start

Every time block
is entered

Stored in

Memory

Memory

Memory

Memory

Maybe in
register

Scope

Local

Local

Global

External

Local

Lifetime

Automatic

Static

Static

Static

Automatic

25

auto Storage Class Declaration

{

auto double x; /* Same as: double x */
int num; /* Same as: auto int num; */

¥

e auto is the default storage class for a variable defined inside a
function body or a statement block

e auto prefixis optional; i.e., any locally declared variable is
automatically auto, unless specifically defined to be static

auto Storage Class Example (Scope)

int func(float a, int b)
{

int 1; < i is visible from this point to end of func

double g; < g is visible from this point to end of func —

for (1 =0; i < b; i++) {

double h = i*g; his only visible from this
point to end of loop!

// Lloop body - may access a, b, i, g, h
} // end of for-loop.

// func body - may access a, b, 1, g

} // end of func()

«

27

auto Storage Class Example (Lifetime)

int func(float a, int b)
{

int i; < Storage for 1 allocated

double g; < Storage for g allocated

for (1 =0; i < b; i++) {

double h = 1*g; « {storage forh allocated

// Lloop body - may access a, b, i, g, h

} // end of for-loop

Storage for h released

// func body - may access a,

b, i, g

Storage for 1 released

} // end of func()iz::::::::::

Storage for g released

28

static Storage Class Declaration
e The static prefix must be included

void funcl(int a)

{
¥

static double local static; static int global static;

void func2(int b)
{

¥

29

extern Storage Class Declaration

e extern isthe default storage class for a variable defined outside
any function’s body

void funcl(int a)

{
}
int global;

void func2(int b)
{

¥

31

extern Storage Class Example 1

#include <stdio.h>
float x = 1.5;

void show (void)

{
printf("%f\n", x); /* Access external x */
}
int main (void)
{
printf("%f\n", x); /* Access external */
show();
return 0;

32

extern Storage Class Example 2a

What if x is defined aftermain and you wantto useitinmain?

#include <stdio.h>

extern float x;

void show (void)

{
printf("%f\n", x); /* Access external x */
}
int main (void)
{
printf("%f\n", x); /* Access external x */
show();
return 9;
}

float x = 1.5;

33

extern Storage Class Example 2b

What if x is defined in another source file?

#include <stdio.h> #include <stdio.h>
void show (void); extern float x;
float x = 1.5; void show (void)
{

int main (void) printf("%f\n", x); /* Access external x */
{

printf("%f\n", x); /* Access external x */ }

show();

return 9;

34

register storage class

o) Registers
Internal Memory
Cache SRAN = (Temporary
Memory Storage Area)

Primary Memory / DRAN

Main Memory
Secondary Memory / Mass Flash
Storage Hard disk

-

External
Memory
™ (Permanent

=

Storage
Area)

o The fastest storage resides within
the CPU itself in high-speed
memory cells called registers

e The programmer can request the
compiler to use a CPU register for
storage

* Example:
register int k;

35

register storage class

e Therequest can beignored, in which case the storage class
defaults to auto

e Aregister variable is local to the block which contains it

C Process Layout

C Process Layout

* Memory space for program code includes
space for machine language code and data

e Text/Code Segment
— Contains program’s machine code

e Data spread over:

— Data Segment - Fixed space for global
variables and constants

— Stack Segment - For temporary data, e.g.,
local variables in a function; expands /
shrinks as program runs

— Heap Segment - For dynamically allocated
memory; expands / shrinks as program runs

Code Segment
(Text Segment)

Data Segment

Heap Segment

free

Stack Segment

C Process Layout

* Memory space for program code includes T —
space for machine language code and data (Text Segment)

e Text/Code Segment

Data Segment
— Contains program’s machine code

e Data spread over:

Heap Segment
— Data Segment - Fixed space for global
variables and constants
— Stack Segment - For temporary data, e.g., L
local variables in a function; expands / -
shrinks as program runs Stack Segment

— Heap Segment - For dynamically allocated
memory; expands / shrinks as program runs

Storage Layout

* Where are auto, static, and extern variables stored?

Contains the program’s machine code

Code Segment
(Text Segment)

Contains static data (e.g., static class, extern class)

Data Segment

Contains dynamically allocated data - later. .. Heap Segment
Unallocated memory that the stack and heap can use A g free
*

Contains temporary data (e.g., auto class)

Stack Segment

40

Next Lecture

* Dynamic Memory Allocation

41

