
Week 5 Lecture 1

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz



Admin stuff

• Assignment 2 released

• Term Test: 
• Date: 17:00 - 18:00, April 19 (Friday), week 6, after the mid-term break

• Rooms for the test: HMLT205, KKLT303

• Class split: TBA (at the course wiki)

• Covers week 1 to week 6(lecture 1) lecture topics 

• Test is 45 minutes long, max marks: 45

• Multiple choice and short answer questions

• Take the weekly practice quiz to prepare for the test

2



Content

• Introduction Dynamic Memory Management

• calloc()

• free()

• malloc()

• realloc()

• Common Problems with Dynamic Memory

3



Recap: Usage of Pointers

1) Provide an alternative means of accessing information stored in 
arrays

2) Provide an alternative (and more efficient) means of passing 
parameters to functions

3) Enable dynamic data structures, that are built up from blocks of 
memory allocated from the heap at run time

4



Recap: Lifetime / Storage Duration

5

Program end

Static

Program start

Block start

Automatic

Block end

Dynamic

Explicit allocation Explicit deallocation



Why Allocate Memory Dynamically?

 It may not be possible to know ahead of time the space needed 
by a variable (e.g., array) for storing data

 With static allocation:
 If predefined size is small, it may not be enough space to hold data, 

resulting in program failure

 If predefined size is big, most of the space will not be used causing waste 
or inefficiency

6



Dynamic Memory Allocation

• Allow the program to dynamically allocate memory for some 
variables (e.g. arrays) during the program execution

• Approach: 
 Program has routines allowing user to 

request some amount of memory, 

 the user then uses this memory, and 

 returns it when they are done.

 Memory is allocated in the Heap Segment

7

Code Segment
(Text Segment)

Data Segment

Heap Segment

free

Stack Segment



Dynamic Memory Management Functions

 calloc - allocate array of memory

 malloc - allocate a single block of memory

 realloc – extend or reduce the amount of space allocated 
previously

 free - free up a piece of memory that is no longer needed

8

Memory allocated dynamically does not go away at the 
end of functions, you MUST explicitly free it up



calloc – Allocate Memory for Array

• Function prototype:

 size_t – special type used to indicate sizes, unsigned int

 num – number of elements to be allocated in the array

 esize – size (in bytes) of a single element to be allocated

 to get the correct value, use sizeof(<type>)

 memory of size num*esize is allocated 

 calloc returns the address of the 1st byte of this memory 
 Cast the returned address to the appropriate type

 If not enough memory is available, calloc returns NULL

9

void *calloc(size_t num, size_t esize)



calloc Example

10

float *nums;
int a_size;
int idx;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *)calloc(a_size, sizeof(float));

/* nums is now an array of floats of size a_size */
for (idx = 0; idx < a_size; idx++) {

printf("Please enter number %d: ",idx+1);
scanf("%f", nums+idx); /* read in the floats */

}

/* Calculate average, etc. */



calloc Example

11

float *nums;
…

nums = (float *)calloc(a_size, sizeof(float));



calloc Example

12

float *nums;
int a_size;
int idx;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *)calloc(a_size, sizeof(float));

/* nums is now an array of floats of size a_size */
for (idx = 0; idx < a_size; idx++) {

printf("Please enter number %d: ",idx+1);
scanf("%f", nums+idx); /* read in the floats */

}

/* Calculate average, etc. */

Any potential 
issues with this 
code?



calloc Example

13

• Always check the return value of calloc, malloc or realloc!

float *nums;
int a_size;
int idx;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *) calloc(a_size, sizeof(float));

if(nums == NULL) {
/* exit or do some other stuff */

}
…



Next Lecture

• Dynamic memory allocation (cont.)

14


