NWEN 241
Systems Programming

Alvin C. Valera

alvin.valera@ecs.vuw.ac.nz

Content

 More on Linked Lists (not to be assessed)

Recap: Singly-Linked List Example

* Node type definition

typedef struct node
{ char data;

struct node *next;
} Node;

* Node variables declaration and initialization

Node noded4 = {'t', NULL};

Node node3 = {'s', &noded};
Node node2 = {'i', &node3};
Node nodel = {'1', &node2};

Node *head = &nodel;

Problems with Previous Example

* Need to know list elements during coding
» What if the list elements are not known prior to program execution?

* The right way: use dynamic memory allocation

Motivating Example

* Ask user to input arbitrary string

* Convert string to a singly-linked list, with each node containing a
character

* User Input:

e Linked List:

head

Preliminaries

* Node type definition

typedef struct node
{ char data;

struct node *next;
} Node;

* Node variables declaration and initialization

Node *head = NULL;

The Rest of The Code

char input[100];
int 1 = 0;
Node *tail = NULL, *tmp;

scanf("%s", input);

while(input[i] !'= '"\@') {
tmp = (Node *)malloc(sizeof(Node));
tmp->data = input[i];
tmp->next = NULL;
if(head == NULL) { head = tmp; tail = head; }
else { tail->next = tmp; tail = tmp; }
1++;

Walkthrough

* Suppose user inputis Dog

char input[100];
int 1 = 0;
Node *tmp, *tail = NULL;

scanf("%s", input);

input

head

tail

tmp—/’

NULL

Walkthrough

* Suppose user inputis Dog
while(input[i] !'= '\@")

input

head

tail

tmp—/’

NULL

Walkth rough input i

* Suppose user inputis Dog e
ed

tmp = (Node *)malloc(sizeof(Node)); .
tmp->data = input[i]; tail
tmp->next = NULL;

tmp

NULL

Walkthrough

* Suppose user inputis Dog

if(head == NULL) {
head = tmp;
tail = head;

input i
Do g|\e %)
head
tail
tmp

NULL

11

Walkthrough

* Suppose user inputis Dog

i++;

input i

head

tail

tmp

NULL

12

Walkthrough

* Suppose user inputis Dog
while(input[i] !'= '\@")

input i

head

tail

tmp

NULL

13

Walkthrough

* Suppose user inputis Dog

tmp = (Node *)malloc(sizeof(Node));
tmp->data = input[i];
tmp->next = NULL;

\0

NULL

14

Walkth rough input i

* Suppose user inputis Dog

else {
tail->next = tmp;
tail = tmp;

NULL

Walkthrough

* Suppose user inputis Dog

i++;

\0

NULL

16

Walkthrough

* Suppose user inputis Dog
while(input[i] !'= '\@")

\0

NULL

17

Walkth rough input i

* Suppose user inputis Dog

tmp = (Node *)malloc(sizeof(Node));
tmp->data = input[i];
tmp->next NULL;

NULL

18

Walkthrough

* Suppose user inputis Dog

else {
tail->next = tmp;
tail = tmp;

head

tail

tmp

NULL

19

Walkthrough

* Suppose user inputis Dog

i++;

NULL

20

Walkthrough

* Suppose user inputis Dog
while(input[i] !'= '\@")

NULL

21

Inserting a Node (At Head)

 Easy if insertion is before first node

Node *to insert;

/* Allocate space for
to _insert and
initialize */

to _insert->next = head;
head = to_insert;

22

Inserting a Node (Not at Head)

* Need to traverse list until insertion point

* |[lustration: Insert "A" in between 'o' and 'g".

_— to_insert —— A"

P

e L]

23

Inserting a Node (Not at Head)

* |[lustration: Insert "A" in between 'o' and 'g°
* Traverse puntil 'o'

to_insert —— A"

P

e L]

24

Inserting a Node (Not at Head)

* |[lustration: Insert "A" in between 'o' and 'g°
* Traverse puntil 'o'
* Insert node

25

Inserting a Node (Not at Head)

Node *to insert;

/* Allocate space for to _insert and initialize */

Node *p = head;

/* Traverse until desired node */
while(p != NULL && p->data != 'o')
p = p->next;

/* Insert */
to_insert->next = p->next
p->next = to _insert;

26

Deleting a Node (At Head)

 Easy if node to delete is first node

i~ Jio L o
Node *to delete;

to _delete = head;
head = to_delete->next;

o L
free(to _delete);

head —

to _delete 27

Deleting a Node (Not at Head)

* Need to traverse list until just before the node to be deleted

* |[lustration: Delete "A" in between '0o' and "g"'.

to delete —

28

Deleting a Node (Not at Head)

* |[lustration: Delete "A" in between '0' and "g"'.
* Traversep until ‘o’

to delete —

NULL

29

Deleting a Node (Not at Head)

* |[lustration: Delete "A" in between '0' and "g"'.
* Traversep until ‘o’
* Let to_delete point to the next node (the node to be deleted)

to delete

NULL

30

Deleting a Node (Not at Head)

* |[lustration: Delete "A" in between '0' and "g"'.
* Traversep until ‘o’
* Let to_delete point to the next node (the node to be deleted)
e Delete node

to delete

o] 151 [
‘r

31

Deleting a Node (Not at Head)

Node *to delete;
Node *p = head;

/* Traverse until desired node */
while(p->next != NULL && p->next->data != 'A'")
p = p->next;

/* Delete */

if(p->next != NULL) {
to _delete = p->next;
p->next = to _delete->next;
free(to _delete);

32

Things to Consider

* What if list is empty?

* What if traversal reaches end (NULL)?

33

