Week 6 Lecture 1

NWEN 241
Systems Programming

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz

Announcement

* Mid-Term Test on 19 April, Friday @17:00

* Covers topics from Week 1 - Week 6(lecture 1 - Enum, Union; file handling will not
be asked)

* Testis 50 minutes long, total of 45 marks
* True/False, multiple choice and short answer questions

* Room Assignment (based on Last Name or Surname)
« HMLT205: (A...-L...)
* KKLT303: (M...-Z...)

* If you are overseas and want to sit online, email me

* Feedback portal is now open, please share your feedback

Content

User Defined Data Types

File Stream 1/0

User Defined Data Types

Background

e Basic data types
— int:integer v/
— char: character v
— float: floating point number v
— double: double-precision floating point number v/
e Derived data types
— Arrays v
— Strings v/
— Structures v/
— Unions
e User defined data types
— Enumeration types

Motivation for Enumeration Type

 Oftentimes, a variable can only
take a few possible discrete #define COLOR_RED 0
values #define COLOR_YELLOW 1
#define COLOR_GREEN 2

* Macro is often used to define
symbolic constants that will

represent possible values of the {

variable int color;
// can either be 0, 1 or 2

int main(void)

* Enumeration is a better
alternative

color = COLOR_GREEN;

Enumeration

e Enumeration is a user-defined data type that is used to assign identifiers
to integral constants

e Declaration syntax:

enum enum_tag {name O, name_1, ..., name_n} variable Llist;

e Defines a new enumerated type
o Defines symbolic constants that take on integer values from 0 through n
> name_0 hasvalue @, name_1 hasvalue 1, and so on

Enumeration

e Enumeration is a user-defined data type that is used to assign identifiers
to integral constants

e Declaration syntax:

enum enum_tag {name_©, name_1, ..., name _n-1} variable List;

e enum _tag and variable List are optional

Enumeration

As an example, the statement:

enum colors { red, , green };

* Defines a new enumerated type enum colors

* Defines three integer constants: red is assigned the value 0,
is assigned 1 and greenis assigned 2

* Any variable of enum colors type or basic data type can be
assigned either red, or green

Enumeration

Unnamed enumeration example:
enum { red, , green };

* Defines three integer constants: red is assigned the value 0,
is assigned 1 and green is assigned 2

* Any variable of basic data type can be assigned either red,
or green

10

Enumeration

o Itis possible to override the integer assignment, e.g.

enum colors {red = 3, , green = 1};

e typedef can be used to create an alias for the new type, e.g.

typedef enum colors {red = 3, , green = 1} color_t;

e color t isanewtypewhich can be used fordeclaring variables

11

Enumeration

o If anidentifieris assigned a value and subsequent identifiers are
not assigned, the subsequent identifiers continue the progression

from the assigned value

enum colors { red, , green, blue };

red is assigned the value 0, is assigned 3, green is assigned 4, and
blue is assigned 5.

enum Example (1)

#include <stdio.h>

/* Declaration defines new enumerated type and integer constants */
enum colors { red, yellow = 3, green, blue };

int main(void)

{

/* Declaration defines variables of type enum colors */
/* Can take values of red, yellow, green or blue */
enum colors fgcolor = blue, bgcolor = yellow;

printf ("%d %d\n", fgcolor, bgcolor);
/* Will print 5 3 */

return 0;

13

enum Example (2)

#include <stdio.h>

/* Declaration defines integer constants */
enum { red, yellow = 3, green, blue };

int main(void)

{

/* Declaration defines variables of type int */
/* Can be assigned red, yellow, green or blue */
int fgcolor = blue, bgcolor = yellow;

printf ("%d %d\n", fgcolor, bgcolor);
/* Will print 5 3 */

return 0;

14

Repeated Identifiers

 An identifierin an enumerated type cannot be re-used to declare a
new variable or enumeration in the same scope

void func(void) void func(void)

{ {
enum colors { red, yellow, black }; enum colors { red, yellow, black };
enum rgb { red, green, blue }; || int red; |

Will not compile due to re-use of identifier red in the same scope

15

Unions

Unions

e Aunionis like a struct, but the different fields take up the same
space within memory

e Declaration syntax:

: : - union_tag specifies the name of the union
union union_tag {

typel memberl; - union_tag andvariable List areoptional

type2 member2; - Ifunion_tag is not specified, variable List

should be specified; otherwise, there is no way to

} variable_Llist; declare variables using the unnamed union type

17

Unions

e Aunionis like a struct, but the different fields take up the same
space within memory

e Declaration syntax:

e Union memberscan be
- Basicdatatypes
~ Derived and user-defined types
— Pointers to basic, derived and user-defined
data types
~ Function pointers

union union _tag {
typel memberl;
type2 member2;

} variable List;

18

Union vs Structure

Declaration syntax Same
Storage allocation Allocates storage for all * Allocates common storage
members separately for all its members

« Spaceisallocated to hold
the biggest member

Access All members can be Only one member can be
accessed at the sametime “active” at any given time

19

Union vs Structure: Storage Allocation

struct space { union space {
int i; int 1i;
float f; float f;
char c[4]; char c[4];
¥ 35

sizeof(struct space) = sizeof(i) + sizeof(f) + sizeof(c)

sizeof(union space) = max(sizeof(i), sizeof(f), sizeof(c))

20

union Example

union elt {

int i;
char c;
} eltl;

Assuming an int takes up
32 bits (4 bytes):

-

} eltl.c

eltl.i <

21

union Example

eltl.c = 'A’;

Assuming an int takes up
32 bits (4 bytes):

/

} eltl.c

eltl.i <

22

union Example

eltl.c = 'A’

eltl.i 300;

Assuming an int takes up
32 bits (4 bytes):

/

} eltl.c

eltl.i <

23

File Stream |/O

Introduction to File Input / Output

e I/Oisthe process of copying data between main memory and
external devices, like terminals (keyboards), disk drives, networks,

etc.

e In C, everything is abstracted as a file
- Eachfileis simply a sequential stream of bytes

- Cimposes no structure on afile

* From the program’s point of view, data input and data output
are made possible through files

Accessing Files

* A file must first be opened properly before it can be accessed for
reading or writing

* Opening a file establishes a “communication channel” between the
program and the file

Program

26

File Stream vs File Descriptor

* “Communication channel” can either be a file stream or file
descriptor

* C provides functions for accessing files via file stream or file
descriptor

| FileDescrptor Filesweam

Content access Primitive access: contents can be Rich access: contents can be
accessed as blocks of bytes formatted using format specifiers
Control operations Allows setting of control Does not allow
parameters

Special /O modes Allows special access modes such Does not allow
as non-blocking

Buffering None Supports 3 modes of buffering

File Stream vs File Descriptor

* File streams provide a higher-level interface, layered on top of
the primitive file descriptor facilities

* For special files (e.g. I/O devices and sockets), file descriptor is the
recommended approach

* For regular files (files on disk), file stream is the recommended
approach

28

Stream Buffering

* One of the common pitfalls when dealing with file streams is
buffering

\
g O /> >

* More problematic in interactive I/O streams
 Data written by program to file does not appear immediately
» Data read by program from file does not appear immediately

29

[llustration

char str[100];
scanf ("%s", str);

* If user types the string

The quick brown fox

* The string str will only be
assigned "The"

* What happens to the rest?

30

Stream Buffering Modes

Mode _____|Description

Unbuffered Characters written to or read from an unbuffered stream are transmitted
individually to or from the file as soon as possible.

Line buffered Characters written to a line buffered stream are transmitted to thefile in
blocks when a newline character is encountered.

Fully buffered Characters written to or read from a fully buffered stream are transmitted to
or from the file in blocks of arbitrary size.

* Newly opened streams are fully buffered by default, except streams
connected to interactive devices which are line buffered

* C provides functions for changing stream buffering mode

31

Next Lecture

e Continuation of File Stream 1/0

 Command Line Arguments

32

