
Week 6 Lecture 1

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Announcement

• Mid-Term Test on 19 April, Friday @17:00
• Covers topics from Week 1 – Week 6(lecture 1 – Enum, Union; file handling will not

be asked)
• Test is 50 minutes long, total of 45 marks
• True/False, multiple choice and short answer questions

• Room Assignment (based on Last Name or Surname)
• HMLT205 : (A… - L…)
• KKLT303: (M… - Z…)

• If you are overseas and want to sit online, email me

• Feedback portal is now open, please share your feedback

2

Content

User Defined Data Types

File Stream I/O

3

User Defined Data Types

4

Background

 Basic data types
 int : integer ✓
 char : character ✓
 float : floating point number ✓
 double : double-precision floating point number ✓

 Derived data types
 Arrays ✓
 Strings ✓
 Structures ✓
 Unions

 User defined data types
 Enumeration types

5

Motivation for Enumeration Type

• Oftentimes, a variable can only
take a few possible discrete
values

• Macro is often used to define
symbolic constants that will
represent possible values of the
variable

• Enumeration is a better
alternative

6

#define COLOR_RED 0
#define COLOR_YELLOW 1
#define COLOR_GREEN 2

int main(void)
{

int color;
// can either be 0, 1 or 2
…
color = COLOR_GREEN;

}

Enumeration

 Enumeration is a user-defined data type that is used to assign identifiers
to integral constants

 Declaration syntax:

 Defines a new enumerated type

 Defines symbolic constants that take on integer values from 0 through n

 name_0 has value 0, name_1 has value 1, and so on

7

enum enum_tag {name_0, name_1, ..., name_n} variable_list;

Enumeration

 Enumeration is a user-defined data type that is used to assign identifiers
to integral constants

 Declaration syntax:

 enum_tag and variable_list are optional

8

enum enum_tag {name_0, name_1, ..., name_n-1} variable_list;

Enumeration

As an example, the statement:

• Defines a new enumerated type enum colors

• Defines three integer constants: red is assigned the value 0,
yellow is assigned 1 and green is assigned 2

• Any variable of enum colors type or basic data type can be
assigned either red, yellow or green

9

enum colors { red, yellow, green };

Enumeration

Unnamed enumeration example:

• Defines three integer constants: red is assigned the value 0,
yellow is assigned 1 and green is assigned 2

• Any variable of basic data type can be assigned either red, yellow
or green

10

enum { red, yellow, green };

Enumeration

 It is possible to override the integer assignment, e.g.

 typedef can be used to create an alias for the new type, e.g.

 color_t is a new type which can be used for declaring variables

11

typedef enum colors {red = 3, yellow = 2, green = 1} color_t;

enum colors {red = 3, yellow = 2, green = 1};

Enumeration

 If an identifier is assigned a value and subsequent identifiers are
not assigned, the subsequent identifiers continue the progression
from the assigned value

red is assigned the value 0, yellow is assigned 3, green is assigned 4, and
blue is assigned 5.

12

enum colors { red, yellow = 3, green, blue };

enum Example (1)

13

#include <stdio.h>

/* Declaration defines new enumerated type and integer constants */

enum colors { red, yellow = 3, green, blue };

int main(void)
{

/* Declaration defines variables of type enum colors */
/* Can take values of red, yellow, green or blue */
enum colors fgcolor = blue, bgcolor = yellow;

printf ("%d %d\n", fgcolor, bgcolor);
/* Will print 5 3 */

return 0;
}

enum Example (2)

14

#include <stdio.h>

/* Declaration defines integer constants */

enum { red, yellow = 3, green, blue };

int main(void)
{

/* Declaration defines variables of type int */
/* Can be assigned red, yellow, green or blue */
int fgcolor = blue, bgcolor = yellow;

printf ("%d %d\n", fgcolor, bgcolor);
/* Will print 5 3 */

return 0;
}

Repeated Identifiers

• An identifier in an enumerated type cannot be re-used to declare a
new variable or enumeration in the same scope

15

void func(void)
{

enum colors { red, yellow, black };

enum rgb { red, green, blue };
…

}

void func(void)
{

enum colors { red, yellow, black };

int red;
…

}

Will not compile due to re-use of identifier red in the same scope

Unions

16

Unions

 A union is like a struct, but the different fields take up the same
space within memory

 Declaration syntax:

17

union union_tag {
type1 member1;
type2 member2;
...

} variable_list;

 union_tag specifies the name of the union

 union_tag and variable_list are optional

 If union_tag is not specified, variable_list
should be specified; otherwise, there is no way to
declare variables using the unnamed union type

Unions

 A union is like a struct, but the different fields take up the same
space within memory

 Declaration syntax:

18

union union_tag {
type1 member1;
type2 member2;
...

} variable_list;

 Union members can be
 Basic data types
 Derived and user-defined types
 Pointers to basic, derived and user-defined

data types
 Function pointers

Union vs Structure

Structure Union

Declaration syntax Same

Storage allocation Allocates storage for all
members separately

• Allocates common storage
for all its members

• Space is allocated to hold
the biggest member

Access All members can be
accessed at the same time

Only one member can be
“active” at any given time

19

Union vs Structure: Storage Allocation

sizeof(struct space) = sizeof(i) + sizeof(f) + sizeof(c)

sizeof(union space) = max(sizeof(i), sizeof(f), sizeof(c))

20

union space {
int i;
float f;
char c[4];

};

struct space {
int i;
float f;
char c[4];

};

union Example

21

union elt {

int i;

char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

elt1.i

elt1.c

union Example

22

union elt {

int i;

char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

'A'

elt1.i

elt1.c

union Example

23

union elt {

int i;

char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

'A'

elt1.i

elt1.c

union elt {

int i;

char c;

} elt1;

elt1.c = 'A';

elt1.i = 300;

Assuming an int takes up
32 bits (4 bytes):

'A'

300elt1.i

elt1.c

File Stream I/O

24

Introduction to File Input / Output

 I/O is the process of copying data between main memory and
external devices, like terminals (keyboards), disk drives, networks,
etc.

 In C, everything is abstracted as a file

 Each file is simply a sequential stream of bytes

 C imposes no structure on a file

• From the program’s point of view, data input and data output
are made possible through files

25

Accessing Files

• A file must first be opened properly before it can be accessed for
reading or writing

• Opening a file establishes a “communication channel” between the
program and the file

26

Program
File“Communication Channel”

File Stream vs File Descriptor

• “Communication channel” can either be a file stream or file
descriptor

• C provides functions for accessing files via file stream or file
descriptor

27

File Descriptor File Stream

Content access Primitive access: contents can be
accessed as blocks of bytes

Rich access: contents can be
formatted using format specifiers

Control operations Allows setting of control
parameters

Does not allow

Special I/O modes Allows special access modes such
as non-blocking

Does not allow

Buffering None Supports 3 modes of buffering

File Stream vs File Descriptor

• File streams provide a higher-level interface, layered on top of
the primitive file descriptor facilities

• For special files (e.g. I/O devices and sockets), file descriptor is the
recommended approach

• For regular files (files on disk), file stream is the recommended
approach

28

Stream Buffering

• One of the common pitfalls when dealing with file streams is
buffering

• More problematic in interactive I/O streams
• Data written by program to file does not appear immediately

• Data read by program from file does not appear immediately

29

Program FileFile StreamBuffer

Illustration

• If user types the string

• The string strwill only be
assigned "The"

• What happens to the rest?

30

char str[100];

scanf ("%s", str);

The quick brown fox

Stream Buffering Modes

Mode Description

Unbuffered Characters written to or read from an unbuffered stream are transmitted
individually to or from the file as soon as possible.

Line buffered Characters written to a line buffered stream are transmitted to the file in
blocks when a newline character is encountered.

Fully buffered Characters written to or read from a fully buffered stream are transmitted to
or from the file in blocks of arbitrary size.

31

• Newly opened streams are fully buffered by default, except streams
connected to interactive devices which are line buffered

• C provides functions for changing stream buffering mode

Next Lecture

• Continuation of File Stream I/O

• Command Line Arguments

32

