
Week 6 Lecture 2

NWEN 241
Systems Programming

Jyoti Sahni
Jyoti.sahni@ecs.vuw.ac.nz

Content

Continuation of File Stream I/O

Command Line Arguments

2

Recap: Accessing Files

• A file must first be opened properly before it can be accessed for
reading or writing

• Opening a file establishes a “communication channel” between the
program and the file

3

Program
File“Communication Channel”

Recap: File Stream vs File Descriptor

• “Communication channel” can either be a file stream or file
descriptor

• C provides functions for accessing files via file stream or file
descriptor

4

File Descriptor File Stream

Content access Primitive access: contents can be
accessed as blocks of bytes

Rich access: contents can be
formatted using format specifiers

Control operations Allows setting of control
parameters

Does not allow

Special I/O modes Allows special access modes such
as non-blocking

Does not allow

Buffering None Supports 3 modes of buffering

Builtin Streams (1)

 Every C program has access to 3 file streams: stdin, stdout,
stderr

5

File Description Default Buffering

stdin Standard input
stream

Connected to the keyboard Line buffered

stdout Standard output
stream

Connected to the screen Line buffered

stderr Standard error
stream

Connected to the screen Unbuffered

Builtin Streams (2)

• You have already been using these streams without you knowing it!

6

printf("Hello, world\n"); stdout

scanf("%d", &i); stdin

File Stream (Stream for Short)

• The <stdio.h> header file provides types and functions for
accessing streams

• FILE structure: a structure that holds information about a stream

• FILE facilitates stream I/O: C functions use FILE pointer to access
files

7

Stream I/O Functions (1)

• fopen – open or create a file and associate a stream

• fclose – close a stream

• fflush – force to write all buffered data to file

• fgetc – read a single character from a stream

• fputc – write a single character to a stream

8

Stream I/O Functions (2)

• fscanf – read formatted input from stream

• fprintf – write formatted output to stream

• fread – read in binary mode from stream

• fwrite – write in binary mode to stream

• fseek/rewind – change position in stream

• ftell – determine position in stream

9

Opening a File

10

A file must be “opened” before it can be used

FILE *fp; // pointer to stream

:::
fp = fopen (filename, mode);

“string” specifying the file name

returns a pointer to FILE (FILE *); used
in all subsequent file operations.

"r" – open the file for reading only
"w" – open the file for writing only
"a" – open the file for appending

data to it

Examples

• Open a file named mydata for reading:

• Open or create a file named file.csv for writing:

11

FILE *fp;

fp = fopen ("mydata", "r");

FILE *fp;

fp = fopen ("file.csv", "w");

• File is opened for reading only –
file must exist

• File reading is positioned at the
start of file

• Creates a new file for writing
• If file exists, contents (if any) are

deleted
• File writing is positioned at the

start of file

Examples

• Open or create a file named sample.txt for appending:

12

FILE *fp;

fp = fopen ("sample.txt", "a");

• Creates a new file for writing if
does not exist

• File writing is positioned at the
end of file

Did fopen() Succeed?

• If the file was not able to be opened, then the value returned by the
fopen() is NULL

• Always check return value of fopen()

13

FILE *fp;

fp = fopen ("mydata", "r");

if (fp == NULL) {

printf ("File open failed.\n");

return 0;
}

Reasons for opening failure:

• File does not exist

• File is already open

• File cannot be created

• File cannot be accessed
(insufficient permissions)

Closing a File

• After completing all operations on a file, it must be closed to ensure
that all file data stored in the buffer are written to the file

• General format:

14

fclose (file_pointer);

FILE *fp; // pointer to data type FILE

:::

fp = fopen (filename, mode);

:::

fclose (fp); // close the file

Flushing Buffer Contents

• To force writing of buffer content to file without closing it, call the
fflush() function

• General format:

15

fflush (file_pointer);

FILE *fp; // pointer to data type FILE

:::

fp = fopen (filename, mode);

:::

fflush (fp); // write buffer to file

:::

Read/Write Operations on Files

• Simplest file input-output (I/O) function: fgetc() & fputc()

• fgetc() reads one character from stream

• fgetc() return an end-of-file marker EOF, when the end of the file
has been reached

16

int ch;

FILE *fp;
:::

ch = fgetc(fp);

getchar() -> fgetc(stdin)

Read/Write Operations on Files

• fputc() is used to write a character to a stream

17

char ch;

FILE *fp;
:::

ch = getc(fp);

char ch;

FILE *fp;
:::

fputc(c, fp);

putchar(c) -> fputc(c,stdout)

Example with fgetc() and fputc()

18

int main(void)

{

FILE *ifp, *ofp;

int c;

ifp = fopen ("ifile.dat","r");

ofp = fopen ("ofile.dat","w");

while ((c = fgetc (ifp)) != EOF)

fputc (toupper(c), ofp);

fclose (ifp);

fclose (ofp);

}

Hello nwen241!

ifile.dat:

HELLO NWEN241!

ofile.dat:

fgetc() vs getc()

 Both routines read a character from a stream

 fgetc() is implemented as a function while getc() is
implemented as a function-like macro

 Argument to getc() should not be an expression with side
effects

 Example: fgetc(*p++) works but getc(*p++) fails

19

fputc() vs putc()

 Both routines write a character to a FILE stream

 fputc() is implemented as a function while putc() is
implemented as a function-like macro

 Same considerations as fgetc() and getc()

20

Recall: scanf()

• Reads user input from keyboard (stdin stream)

• Consider:

21

int a, b;

scanf("%d %d", &a, &b);

Format specifier expects 2
integers in decimal

2 numbers entered by user on
keyboard will be stored here

scanf() [and printf()] are
variadic functions: the number
of arguments they accept is not
fixed

fscanf()

• Same as scanf() except need stream (FILE *) as an argument
• scanf() reads formatted input from stdin stream

• fscanf() reads formatted input from specified stream

• Example:

22

int a, b;

FILE *fp;

fp = fopen ("datafile", "r");

fscanf(fp, "%d %d", &a, &b);

fscanf() would read values from
the stream pointed by fp and
assign those values to a and b

scanf("%d", &a) -> fscanf(stdin, "%d", &a)

Example (1)

• Consider:

• Contents of datafile:

• What is the value assigned to a and b?

23

int a, b;

FILE *fp;

fp = fopen ("datafile", "r");

fscanf(fp, "%d %d", &a, &b);

100 200

a = 100, b = 200

Example (2)

• Consider:

• Contents of datafile:

• What is the value assigned to a and b?

24

int a, b;

FILE *fp;

fp = fopen ("datafile", "r");

fscanf(fp, "%d %x", &a, &b);

100 200

a = 100, b = 512

200 is taken as a
hexadecimal
number

Detecting End of File using EOF

• End-of-file indicator EOF informs the program when there are no
more data (no more bytes) to be processed

• fscanf() returns EOF if end-of-file is reached, or errors were
encountered when reading from stream

• Example:

25

int ret, var;

ret = fscanf (fp, "%d", &var) ;

if (ret == EOF) {

printf ("End-of-file encountered.\n");

}

Detecting End of File using feof()

• Use the feof() function which returns a non-zero value (true) or
zero (false) condition
• True if EOF is reached, or errors were encountered during read operation

• False otherwise

• Example:

26

int var;

fscanf (fp, "%d", &var) ;

if (feof(fp)) {

printf ("End-of-file encountered.\n");

}

Recall: printf()

• Writes to screen (stdout stream)

• Consider:

27

int a = 1, b = 2;

printf("%d %d", a, b);

Format specifier will write 2
integers in decimal

2 numbers to be written to
screen

fprintf()

• Same as prinf() except need stream (FILE *) as an argument
• printf() writes formatted output to stdout stream

• fprintf() writes formatted output to specified stream

• Example:

28

int a = 100, b = 200;

FILE *fp;

fp = fopen ("datafile", "w");

fprintf(fp, "%d %d", a, b);

fprintf() would write the values
stored in a and b to the stream
pointed to by fp

printf("%d", a) -> fprintf(stdout, "%d", a)

Example (1)

• What will be the contents of datafile after running this code?

29

int a = 100, b = 200;

FILE *fp;

fp = fopen ("datafile", "w");

fprintf(fp, "%d %d", a, b);

100 200

Example (2)

• What will be the contents of datafile after running this code?

30

int a = 100, b = 200;

FILE *fp;

fp = fopen ("datafile", "w");

fprintf(fp, "%d %x", a, b);

100 c8
c8 is the hexadecimal
representation of 200

Handling Binary Files

 Same as dealing with text files except in the opening step

FILE *fp; // pointer to stream

:::
fp = fopen (filename, mode);

31

"rb" – open the file in binary mode for reading only
"wb" – open the file in binary mode for writing only
"ab" – open the file in binary mode for appending

data to it

Reading Binary Files

• Read blocks of binary data from stream

• fread() returns the actual number of elements read

32

size_t fread (void *ptr, size_t size, size_t nmemb,
FILE *stream);

Where to store the data
read from file Size of 1 block

Max number of blocks
to read

Stream to read

Example

• Will read the first 10 bytes of file1.exe and store them in buffer

33

FILE *fp;
unsigned char buffer[10];

fp = fopen("file1.exe", "rb");
fread (buffer, sizeof(buffer), 1, fp);

Writing Binary Files

• Writes blocks of binary data to stream

• fwrite() returns the actual number of elements written

34

size_t fwrite (void *ptr, size_t size, size_t nmemb,
FILE *stream);

Location of data to
write Size of 1 block

Number of blocks to
write

Stream to write

Example

 Will write the data array to datafile

35

FILE *fp;
int data[4] = {15, 31, 63, 127};

fp = fopen("datafile", "wb");
fwrite (data, sizeof(int), 4, fp);

Example

• In Linux, you can use hexdump to view contents of binary file

• hexdump –d datafile will display the contents of datafile in
decimal

36

00015 00000 00031 00000 00063 00000 00127 00000

datafile:

15 31 63 127

Random Access

• After opening a file, read/write position is either at start or end of
file

• To change position, use either fseek() or rewind()

• To know current position, use ftell()

37

fseek()

• fseek() allows repositioning within a file

• New position in the file is determined by:

• offset – byte count (possibly -ve) relative to the position
specified by startpointwhere

• startpoint: {SEEK_SET, SEEK_CUR, SEEK_END}

38

int fseek(FILE *stream, long int offset, int startpoint);

Beginning of file Current file position End of file

ftell()

• ftell() returns the current file position:

• This may be saved and later passed to fseek():

39

long ftell(FILE *stream);

long file_pos;
file_pos = ftell(fp);
…
fseek(fp, file_pos, SEEK_SET);
/* return to previous position */

rewind()

• Reposition reading/writing to start of file

• rewind(fp) is equivalent to:

fseek(fp, 0, SEEK_SET)

40

Command Line Arguments

41

Command Line Arguments

• Command line arguments are parameters supplied to a program
when it is invoked

• Example:

 When invoking the command cd to change directory, you may
have to specify the directory that you want to go to as an
argument:

42

$ cd /home/yoda/padawan_grades

Command line argument

Command Line Arguments

• Command line arguments are parameters supplied to a program
when it is invoked

• How do these parameters get into the program?

43

The dark side clouds everything.
Impossible to see the answer is.

main() Function

• The main function can actually be implemented in two ways

44

int main(void)
{

...
}

int main(int argc, char *argv[])
{

...
}

Command Line Arguments

• Command line arguments are parameters supplied to a program
when it is invoked

• How do these parameters get into the program?

 Every C program has a main() function

 main() can actually take 2 arguments, conventionally called argc and
argv

 Command line arguments are passed to the program through argc and
argv

45

The dark side clouds everything.
Impossible to see the answer is.

Passing Arguments to main()

• General format of command line arguments:

int main(int argc, char* argv[])

• argc
 Number of arguments (including program name)

• argv
 Array of strings

 argv[0]  program name

 argv[1]  first argument

 …

 argv[argc-1]  last argument

46

Example

• Consider the C program main_arg.c:

47

#include <stdio.h>

int main(int argc, char* argv[])

{

int i;

printf("%d arguments\n", argc);

for(i = 0; i < argc; i++)

printf(" %d: %s\n", i, argv[i]);

return 0;

}

Example

• Compile and generate executable file main_arg

48

gcc main_arg.c –o main_arg

Program Output

49

$./main_arg NWEN241 is about Systems Programming using C

8 arguments

0: ./main_arg

1: NWEN241

2: is

3: about

4: Systems

5: Programming

6: using

7: C

$

Total of 8 arguments including program name itself.

Arguments are read in as strings.

Next Lecture

• Friday tutorial

• Alvin Valera will deliver the second half of the course

50

