
Week 7 Lecture 1 and 2

NWEN 241
Systems Programming

Alvin Valera
alvin.valera@ecs.vuw.ac.nz

1

My Contact Details

Email: alvin.valera@ecs.vuw.ac.nz

Office: AM418, Alan MacDiarmid Building, Kelburn Campus

Office Hours: Tuesdays, 10:00 a.m. -12:00 p.m.

2

Announcements

• Exercise 3 is out, due on 1 May 2024 23:59)
• Visit https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Exercises for the

handout

• Assignment 3 is out, due on 13 May 2024 23:59
• Visit https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Assignments for the

handout

3

https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Exercises
https://ecs.wgtn.ac.nz/Courses/NWEN241_2024T1/Assignments

Content

• System calls (Introduction here, details next week)

• Interprocess communication

4

System calls - What and Why?

5

Conceptual View of a Computer System

Hardware

Applications

Operating System

Users

System calls - What and Why?

6

- Typically needs access to system resources.

- System resources can be:
a) physical – e.g. input devices, screen displays.

OR
b) Virtual – e.g. files, network connections, threads.

- Applications need O.S. to enable them access
these resources.

Conceptual View of a Computer System

Hardware

Applications

Operating System

Users

System calls - What and Why?

• Operating Systems do not allow application software to
access system resources directly due to security and
reliability issues.

• A program can request the services of system resources from
OS through system calls.

• System calls are function invocations made from
application into the OS in order to request some service or
resource from the operating system.

• Application developers often do not have direct access to
system calls but can access them through a system call API,
which in turn invokes the system call. 7

Hardware

Applications

Operating System

Users

System Call Interface

An example of a system call usage

• Consider the following example:

8

C Library function printf "asks"
the operating system to print
for the calling program by
using the system call API
routines

#include<stdio.h>

int main()
{

printf("Hello World");
return 0;

}

System call invocation –Example

9

#include <stdio.h>
void main(void)
{

printf("Hello, world\n");
exit(0);

}

System Call Interface
User mode

Kernel mode

Standard C Library

write()

sys_write()
system call

handler

Interprocess Communication

10

What is a process ?

11

• Program and process are related terms.

Program is a set of instructions to
carry out a specified task

Process is a program in execution

Passive entity Active entity

Program is a stored in disk and
does not require any other resource.

Process requires system resources
such as CPU, memory, I/O etc.

Life span - Longer Life span – limited

Each time a program is run a new process is created.

Process lifecycle

12

As a process executes, it changes
state

• new: The process is being created

• ready: The process is waiting to be
assigned to a processor

• running: Instructions are being
executed

• waiting: The process is waiting for
some event to occur

• terminated: The process has finished
execution

new

ready running

waiting

terminated
admitted

interrupt

exit

I/O or
event completion I/O or

event wait

Scheduler dispatch

Process management system calls

The following system calls are used for basic process management.

• fork()

• exec()

• wait()

• exit()

13

Defined in unistd.h

Defined in sys/wait.h

Defined in stdlib.h

Process - Independent Vs Cooperating

• Independent processes: processes that don’t interact with other
processes

• Cooperating processes: process can affect or be affected by other
processes.

• In order to co-operate processes need to communicate
• Inter Process Communication

14

Cooperating Processes

• Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

• Cooperating processes can reside on same machine or in different
machines (on a network).

15

Interprocess communication

• Cooperating processes
need interprocess
communication (IPC)

• Two primary models of IPC

• Message passing

• Shared memory

16

Message passing

• Processes communicate with each other without
resorting to shared variables

• IPC facility provides two primitive operations:

• send(message)

• receive(message)

• If A and Bwish to communicate, they need to:

• establish a communication link between them

• exchange messages via send/receive

17

Design options - Synchronization

18

send receive

Process A

Process B

Process A...…....blocked…..,….

receive send

send receive

Process A

Process B

receive send

Non-blocking (Asynchronous)Blocking (Synchronous)

Design options - Synchronization

19

Blocking Non - Blocking

Send Has the sender block until the
message is received

Has the sender send the message
and continue

Receive Has the receiver block until a
message is available

Has the receiver shown its willing
to receive message and continue

Different combinations possible

Design options - Buffering

• Queue of messages attached to the link

• Implemented in one of three ways:

• Zero capacity – 0 messages
Sender must wait for receiver

• Bounded capacity – finite length of n
messages
Sender must wait if link full

• Unbounded capacity – infinite length
Sender never waits

20

Process BProcess A

Process BProcess A

Client-server model

• Most common IPC paradigm

• Based on the producer-consumer model
of process cooperation

• Client makes the request for some
resource or service to the server process

• Server process handles the request and
sends the response (result) back to the
client

21

Client process Server process

Request

Response

Client-server model

• Client process needs to know the
existence and the address of the server

• However, the Server does not need to
know the existence or address of the
client prior to the connection

• Once a connection is established, both
sides can send and receive information

22

Client process Server process

Request

Response

Client-server communication

• Remote Procedure Calls

• Pipes

• Sockets

23

What is socket?

• What do we need to know to allow two processes on a
network to communicate?
• Identity of the communicating machines

• IP Address

• Identity of the communicating processes on these
machines

• Port

• Concatenation of IP address and port defines a socket
- A socket is defined as an endpoint for communication
• Example: The socket 161.25.19.8:1625 refers to port 1625 on

host 161.25.19.8
24

Socket communication

25

Port numbers

• Each host has 65,536 ports

• Use of ports 0-1023 requires
privileges

• Some ports are reserved for
specific apps
• 20, 21: FTP

• 23: Telnet

• 80: HTTP

• see RFC 1700
26

Port 0

Port 1

Port 65535

Sockets as programming interface

• An interface between application and network
• The application creates a socket

• The socket type dictates the style of communication

• TCP (Transmission Control Protocol) vs UDP (User Datagram protocol)

• reliable vs. best effort

• connection-oriented vs. connectionless

27

Client Application Server ApplicationNetwork

Socket Socket

Socket types

• SOCK_STREAM
• a.k.a. TCP

• reliable delivery

• in-order guaranteed

• connection-oriented

• bidirectional

28

• SOCK_DGRAM
• a.k.a. UDP

• unreliable delivery

• no order guarantees

• no notion of “connection” – app
indicates destination for each
packet

• can send or receive

We will focus on SOCK_STREAM or TCP socket type

TCP Vs UDP

29

Feature TCP UDP

Connection status
Requires an established connection to transmit data
(connection should be closed once transmission is
complete)

Connectionless protocol with no requirements
for opening, maintaining, or terminating a
connection

Guaranteed delivery
Can guarantee delivery of data to the destination
router

Cannot guarantee delivery of data to the
destination

Retransmission of data Retransmission of lost packets is possible No retransmission of lost packets

Method of transfer
Data is read as a byte stream; messages are
transmitted to segment boundaries

UDP packets with defined boundaries; sent
individually and checked for integrity on arrival

Speed
Slower than UDP (due to overheads involved for
maintaining accuracy)

Faster than TCP

Optimal use
Where accuracy is more important than speed.
Used by HTTPS, FTP, etc.

Where speed is more important than accuracy
Video conferencing, streaming, DNS, VoIP, etc.

Note: TCP establishes a virtual connection – packets may or may not follow the same path (depends if
the Network layer protocol are connection oriented.) . IP – is connection-less

System calls

• socket()

• bind()

• listen()

• accept()

• connect()

• send() / sendto()

• recv() / recvfrom()

30

sys/types.h

sys/socket.h

Include

TCP Server overview

1) Create a socket with the socket()
system call

2) Bind the socket to an address using
the bind() system call

3) Listen for connections with the
listen() system call

4) Accept a connection with the
accept() system call

5) Send and receive data

31

Client /
Server
Session

Client Server

socket socket

bind

listen

recv

sendrecv

send

Connection
request

recv

close

close
EOF

acceptconnect

TCP Client overview

1) Create a socket with the
socket() system call

2) Connect the socket to the
address of the server using the
connect() system call

3) Send and receive data

32

Client /
Server
Session

Client Server

socket socket

bind

listen

recv

sendrecv

send

Connection
request

recv

close

close
EOF

acceptconnect

Client-server communication overview - UDP

33

Client Server

socket

socket

bind

recvfrom

sendtorecvfrom

sendto

close

Server: step 1

• Create a socket with the socket() system call

• domain – communication domain (protocol family) such as AF_INET (IPv4) or
AF_INET6 (IPv6)

• type – communication semantics such as SOCK_STREAM (TCP) or SOCK_DGRAM
(UDP)

• protocol specifies the protocol. Normally only a single protocol exists to support
a particular socket type within a given protocol family, in which case protocol can
be specified as 0.

• Creates an endpoint of communication.
• If successful, returns socket file descriptor, otherwise, returns -1

34

int socket(int domain, int type, int protocol);

Server: step 1 example

35

• Create TCP socket

• Create UDP socket

int fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd == -1) {

printf("Error creating socket");
exit(0);

}

int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1) {

printf("Error creating socket");
exit(0);

}

Server: step 2

• Bind the socket to an address using the bind() system call

• sockfd is the socket file descriptor (returned by socket())

• addr is a pointer to the structure struct sockaddr (generic data type for
address) which contains the host IP address and port number to bind to

• addrlen is the length of what addr points to

• Binding means associating and reserving a port number for use by the socket
• If successful, returns 0, otherwise, returns -1

36

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

Generic descriptor for any kind of socket

struct sockaddr
• struct sockaddr_in in IPv4 (included the <netinet/in.h> header)

37

struct sockaddr_in {
short sin_family; // AF_INET
unsigned short sin_port; // port number
struct in_addr sin_addr; // Internet address in

//network byte order

};

struct in_addr {
unsigned long s_addr; // IPv4 address in network

//byte order
};

Struct specific to IPV4 protocol based communication

Host and network byte order

38

• Little-endian and big-endian issue?

A big-endian system stores the most significant
byte of a word at the smallest memory address
and the least significant byte at the largest.

A little-endian system, in contrast, stores the least-
significant byte at the smallest address.

Host and network byte order

39

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

• Byte ordering also matters in network communication

• Host and network may differ in byte ordering

• Host byte order may be little-endian or big-endian

• Network byte order is always big-endian

• Functions for converting between host and network byte order without having
to first know what method is used for the host byte order::

Server: step 2 example

40

int fd = socket(AF_INET, SOCK_STREAM, 0);
…

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_port = htons(1234); // port 1234
addr.sin_addr.s_addr = INADDR_ANY; // any address

if (bind(fd, (struct sockaddr *)&addr, sizeof(addr))<0) {
printf("Error binding socket");
exit(0);

}

struct sockaddr_in {
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;

};

struct in_addr {
unsigned long s_addr;

};

Server: step 3

• Listen for connections with the listen() system call

• sockfd is the socket file descriptor (returned by socket())

• backlog is the maximum number of pending connections to allow for this
socket
• SOMAXCONN is defined as the number of maximum pending connections allowed by

the operating system

• If successful, returns 0, otherwise, returns -1

41

int listen(int sockfd, int backlog);

Server: step 3 example

42

int fd = socket(AF_INET, SOCK_STREAM, 0);
…

if(listen(fd, SOMAXCONN) < 0) {
printf("Error listening for connections");
exit(0);

}

Server: step 4

• Accept a connection with the accept() system call

• sockfd is the socket file descriptor (returned by socket())
• addr is a pointer to the structure struct sockaddr which will contain

the details of the peer socket (client)
• addrlen is a pointer to the length of what addr points to

• If successful, returns non-negative socket file descriptor, otherwise,
returns -1

43

int accept(int sockfd, struct sockaddr *addr,
socklen_t *addrlen);

Server: step 4 example

44

int fd = socket(AF_INET, SOCK_STREAM, 0);
…
struct sockaddr_in client_addr;
int addrlen = sizeof(client_addr);

int client_fd = accept(fd, (struct sockaddr *)&client_addr,
(socklen_t*)&addrlen);

if(client_fd < 0) {
printf("Error accepting connection");
exit(0);

}

Server: step 5

• Send and receive data

• sockfd is the socket file descriptor (returned by accept())

• buf is a pointer to buffer to be sent

• len is the length of buffer to be sent

• flags is bitwise OR of zero or more options

• Used in connection-oriented sockets (TCP)

• If successful, returns number of characters sent, otherwise, returns -1

• send(sockfd, buf, len, 0); is equivalent to write(sockfd, buf,
len);

45

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

Server: step 5

• Send and receive data

• sockfd is the socket file descriptor (returned by socket())

• buf is a pointer to buffer to be sent

• len is the length of buffer to be sent

• flags is bitwise OR of zero or more options

• dest_addr is a pointer to the structure struct sockaddr which will contain the details
of the peer socket

• addrlen is a pointer to the length of what dest_addr points to

• Used in non-connection-oriented sockets (UDP)

• If successful, returns number of characters sent, otherwise, returns -1
46

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);

Server: step 5 example using send()

47

int fd = socket(AF_INET, SOCK_STREAM, 0);
…
int client_fd = accept(fd, (struct sockaddr *)& client_addr,

(socklen_t*)&addrlen);
…

char msg[] = "hello, world";
ssize_t r = send(client_fd, msg, strlen(msg), 0);
if(r < 0) {

printf("Error sending message");
close(client_fd);
exit(0);

}

Server: step 5

• Send and receive data

• sockfd is the socket file descriptor (returned by accept())

• buf is a pointer to buffer to be received

• len is the length of buffer to be received

• flags is bitwise OR of zero or more options

• Used in connection-oriented sockets (TCP)

• If successful, returns number of characters received, otherwise, returns -1

• If peer socket is shutdown/closed, will return 0

• recv(sockfd, buf, len, 0); is equivalent to read(sockfd, buf,
len); 48

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

Server: step 5

• Send and receive data

• sockfd is the socket file descriptor (returned by socket())

• buf is a pointer to buffer to be received

• len is the length of buffer to be received

• flags is bitwise OR of zero or more options

• src_addr is a pointer to the structure struct sockaddr which will contain the details
of the peer socket

• addrlen is a pointer to the length of what src_addr points to

• Used in non-connection-oriented sockets (UDP)

• If successful, returns number of characters received, otherwise, returns -1

• If peer socket is shutdown/closed, will return 0
49

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen);

Server: step 5 example using recv()

50

int fd = socket(AF_INET, SOCK_STREAM, 0);
…
int client_fd = accept(fd, (struct sockaddr *)& client_addr,

(socklen_t*)&addrlen);
…

char incoming[100];
ssize_t r = recv(client_fd, incoming, 100, 0);
if(r <= 0) {

printf("Error receiving message");
close(client_fd);
exit(0);

}
// Do something with receiving message
printf("Received message: %s", incoming);

• Create a socket with the socket()
system call

• Same as server step 1

51

Client /
Server
Session

Client Server

socket socket

bind

listen

recv

sendrecv

send

Connection
request

recv

close

close
EOF

acceptconnect

Client: step 1

Client: step 2

• Connect the socket to the address of the server using the connect() system
call
• This step is only required for connection-oriented sockets (TCP)

• sockfd is the socket file descriptor (returned by socket())

• addr is a pointer to the structure struct sockaddr which will contain the details of the
server socket

• addrlen is a pointer to the length of what addr points to

• If successful, returns 0, otherwise, returns -1

52

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

Client: step 3

• Send and receive data

• Same as server step 5

53

Closing a socket

• Socket must be closed after its use

• sockfd is the socket file descriptor (returned by socket())
• how can either be SHUT_RD (further receptions disallowed), SHUT_WR (further

transmissions disallowed), or SHUT_RDWR (further receptions and transmissions
disallowed)

• Shutdown blocks communication without destroying the socket, close blocks the
communication and destroys the socket.

• If successful, returns 0, otherwise, returns -1

54

int shutdown(int sockfd, int how);

int close(int sockfd);

Next Lecture

• Process Management System calls

55

