
Week 8 Lecture 1

NWEN 241
Systems Programming

Alvin Valera
Alvin.valera@ecs.vuw.ac.nz

1

Content

• Socket programming (cont.)

• System calls

• Process management

2

Closing a socket

• Socket must be closed after its use

• sockfd is the socket file descriptor (returned by socket())
• how can either be SHUT_RD (further receptions disallowed), SHUT_WR (further

transmissions disallowed), or SHUT_RDWR (further receptions and transmissions
disallowed)

• Shutdown blocks communication without destroying the socket, close blocks the
communication and destroys the socket.

• If successful, returns 0, otherwise, returns -1

3

int shutdown(int sockfd, int how);

int close(int sockfd);

Some points to note

4

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

if (bind(fd, (struct sockaddr *)&addr, sizeof(addr))<0) {
printf("Error binding socket");
exit(0);

}

struct sockaddr_in {
short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;

};

struct in_addr {
unsigned long s_addr;

};

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

}

bind()assigns the address

specified by addr to the

socket referred to by the file

descriptor sockfd.

The rules used in name

binding vary between

address families. The

actual structure passed for

the addr argument

depends on the address

family.

A sockaddr is used to

refer to any type of

address.

The only purpose of this

structure is to cast the

structure pointer passed

in addr

struct sockaddr_un {
sa_family_t sun_family; /*AF_UNIX*/
char sun_path[108];

/* Pathname */
};

Some points to note

5

• Little-endian and big-endian issue: Some computers write data "left-to-
right" and others "right-to-left".

• A machine can read its own data just fine - problems happen when one
computer stores data and a different type tries to read it.

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

big-end first little-end first

How can we check endianness

• Use command-line utility: lscpu (linux)

• Write your own program in C:

6

#include<stdio.h>
void main(){
int n = 1;
// little endian if true
if(*(char *)&n == 1)

printf("Little endian");
else

printf("Big endian");
}

0

0

0

1

1

0

0

0

big-end first little-end first

0 0 0 1n

System Calls

7

How to know which system calls are invoked?

Two commands:

a) ltrace – traces call to library functions

b) strace -traces system calls

See details in Linux manual pages

Usage :

ltrace ./<program executable file>

ltrace –S ./<program executable file> (also display Kernel system calls)

8

9

ltrace –S output

How to know which system calls are invoked?

Invoking System calls
There are two different methods by which a program can
invoke system calls:

• Directly: by making a system call to a function (i.e.,
entry point) built directly into the kernel, or

• Indirectly: by calling a high-level Application
Programming Interface (API) (provided by Linux system
library and language library) that invokes the system
call.

• Mostly accessed by via a high-level Application
Programming Interface (API) rather than direct system
call use

• Three most common APIs:
- Win32 API for Windows
- POSIX API for POSIX-based systems (including
UNIX, Linux, and Mac OS X)

- Java API for the Java virtual machine (JVM)
10

User Applications

System Libraries

System Call Interface

Direct system
call

System call via API

System call implementation

• Typically, a number is associated with each system call

• System call interface maintains a table indexed according to these
numbers

• System call interface invokes intended system call in kernel and returns
status of the system call and any return values

• Caller need not know about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of OS interface hidden from programmer by API

Linux system call table

• First few lines of the table

• For more information:
https://github.com/torvalds
/linux/blob/v3.13/arch/x86/
syscalls/syscall_64.tbl

#
64-bit system call numbers and entry vectors
#
The format is:
<number> <abi> <name> <entry point>
#
The abi is "common", "64" or "x32" for this file.
#
0 common read sys_read
1 common write sys_write
2 common open sys_open
3 common close sys_close
4 common stat sys_newstat
5 common fstat sys_newfstat
6 common lstat sys_newlstat
7 common poll sys_poll

https://github.com/torvalds/linux/blob/v3.13/arch/x86/syscalls/syscall_64.tbl

Directly Invoking System calls

13

To make a direct
system call we need
low-level
programming,
generally in
assembler.

User need to know
target architecture,
cannot create CPU
independent code.

.global _start

.text
_start:
write(1, message, 13)
mov $1, %rax # system call 1 is write
mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi # address of string to output
mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write

exit(0)
mov $60, %rax # system call 60 is exit
xor %rdi, %rdi # we want return code 0
syscall # invoke operating system to exit

.data
message:
.ascii "Hello, world\n"

Simpler version

14

#include <stdio.h>

void main(void)
{

printf("Hello, world\n");
exit(0);

}

Will invoke write() system
call via API (standard C
library)

Simpler version

15

#include <stdio.h>
void main(void)
{

printf("Hello, world\n");
exit(0);

}

System Call Interface
User Space

Kernel Space

Standard C Library

write()

write()
system call

Categories and examples of system calls

16

• Unix and Linux both conform to
POSIX standard (GNU C Library -
glibc)

• POSIX: Portable Operating System
Interface

Process Management

17

Process Vs Program

18

• Program is static, with the potential for execution

• Process is a program in execution and have a state

• One program can be executed several times and thus has several processes

new

ready running

waiting

terminated
admitted

interrupt

exit

I/O or
event completion I/O or

event wait

Scheduler dispatch

Process in memory

19

Code Segment
(Text Segment)

Data Segment

Heap Segment

free

Stack Segment

• Text / Code Segment

− Contains program’s machine code

• Segments for Data

spread over:
− Data Segment – Fixed space for global

variables and constants

− Stack Segment – For temporary data, e.g.,
local variables in a function; expands /
shrinks as program runs

− Heap Segment – For dynamically allocated
memory; expands / shrinks as program runs

Process control block

• Information associated with each process
– Process state

– Program counter

– CPU registers

– CPU scheduling information

– Memory-management information

– Accounting information

– I/O status information

• A process is named using its
process ID (PID) or process #

• Stored in a process control
block (PCB)

20

Process representation in Linux

• Represented by structure task_struct

• See https://github.com/torvalds/linux/blob/master/include/linux/sched.h
for more information

• Some of the structure members

21

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

Process representation in Linux

• Represented by structure task_struct

• See https://github.com/torvalds/linux/blob/master/include/linux/sched.h
for more information

22

struct task_struct
Process information

.

.
;

struct task_struct
Process information

.

.
;

struct task_struct
Process information

.

.
;

Current
(currently executing processes)

. . .

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

Process switching

23

Process scheduling

• Process scheduler selects among ready processes for next execution on
CPU

• Maintains scheduling queues of processes

• Job queue – set of all processes in the system

• Ready queue – set of all processes residing in main memory, ready
and waiting to execute

• Device queues – set of processes waiting for an I/O device

• Processes migrate among the various queues

24

Ready queue and various I/O device
queues

25

Process Initialization on Linux

• The init process (Init is the parent of all processes, executed by the kernel
during the booting of a system).

• A process is created by another process, which, in turn create other processes
→ process tree

26

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

Linux
process tree

Every
process has
a process ID
(PID)

Linux ps command

• Used to obtain information
about processes that are
running in the current shell

27

$ ps
PID TTY TIME CMD

31843 pts/35 00:00:00 bash
31850 pts/35 00:00:00 ps

Process ID
Every process is assigned a PID by the kernel

Linux ps command

28

$ ps -f
UID PID PPID C STIME TTY TIME CMD
sahnijy 31843 31835 0 12:37 pts/35 00:00:00 -bash
sahnijy 32100 31843 0 12:43 pts/35 00:00:00 ps -f

Parent Process ID
PID of the process that started the process

Parent and child

29

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

Parent of processes 6 and 200,
Child of process 1

Children of process 2

When liux starts it runs a single
program, init with process id 1

Next Lecture

• System calls for Process Management

30

