
Week 9 Lecture 1

NWEN 241
Systems Programming

Alvin Valera
Alvin.valera@ecs.vuw.ac.nz

1

Content

• Introduction to C++
• Data Types

• Scope and Namespace

• Input Output

• C++ Classes

2

Programming with C++

3

Introduction to C++

• Developed by Bjarne Stroustrup in 1979.
• Objective was to develop efficient and flexible language similar to C that also

provided high-level features for program organization

• C++ used to be initially called “C with Classes”

• The first standard appeared in 1998 - C++98

• Latest standard - C++ 20
• Over time, both C and C++ evolved and have diverged from one another.

• Compatibility between the languages is has always been considered important

• Widely use for video games, embedded systems, IoT and resource-
heavy VR and AI applications

4

Introduction to C++

• C++ extends C

• Is C++ a superset of C ?
• Not anymore

• Not every C program can run on a C++ complier

• Most of the C programs run on a C++ compiler

5

Introduction to C++

C++ extends C with

• strong type checking

• new data types

• Classes for implementing user defined data types

• Object-oriented programming (also supports - procedural and functional).

• a standard library (STL) for frequently used data types (string, list, stack, queue,
vector, hash,…)

• generic programming, i.e., parameterization of variable types via templates

• exceptions for error handling

6

7

#include<stdio.h>
int main()
{

printf("Hello World");
}

hello.cpp

Compile: g++ hello.cpp –o helloex

Run: ./helloex

Programs written in C may be
valid in C++

Moving from C to C++

• Header Files:
• In standard C++, library headers are not supposed to have an extension.

• C++ standard neither requires nor forbids an extension for other headers.
The common choices of extension of user defined headers are- *.h / *.hh /*
.hpp

• C Compatibility Header Files
• For some of the C standard library headers of the form xxx.h, the C++

standard library both includes an identically-named header and another
header of the form cxxx.

8

Moving from C to C++

Primitive Data Types

9

Data Type Keyword Modifiers

Character char signed, unsigned

Integer int signed, unsigned,
short, long, long long

Float float

Double double long

Boolean bool

Wide character representations wchar_t

I / O in C++

10

I/O Basics

• C/C++ I/O are based on streams, which are sequence of bytes
flowing in and out of the programs

• Streams acts as an intermediaries between the programs and the
actual I/O devices

11

C++ Program

Input Stream

Output Stream

Input Device
(Keyboard, file etc.)

Output Device
(console, file etc.)

With input streams, the
extraction operator (>>) is used
to remove values from the
stream

With output streams, the
insertion operator (<<) is used
to put values in the stream

Standard output

12

#include<iostream>
int main()
{

std::cout<<"Hello World";
}

Namescape where cout is
defined

Object used to display
output

Insertion operator

Standard Input

13

#include<iostream>
int main()
{

int i;
std::cin>>i;

std::cout<<"You entered"<<i;
}

Namespace where cin in
defined

Object used to read input

extraction operator

Standard I/O in C++

• C++ comes with four predefined standard stream objects

• cerr and clog are output streams that essentially work like cout,
with the only difference being that they identify streams for specific
purposes: error messages and logging.

• Can also be individually redirected to other I/O devices.

Stream Description Remarks

cin Tied to the standard input Typically tied to the keyboard

cout Tied to the standard output Typically tied to the monitor

cerr Tied to the standard error, providing unbuffered* output Typically tied to the monitor

clog Tied to the standard error, providing buffered* output Typically tied to the monitor

* Unbuffered output is typically handled immediately, where as buffered output is typically stored 14

Scope and Namespace

15

Scope When we declare a program element such as a
variable, function or a class its name can only be
“visible" and used in certain parts of your program.

The context in which a name is visible is called its
scope.

An entity declared outside any block has global
scope, meaning that its name is valid anywhere in the
code.

While an entity declared within a block, such as a
function or a selective statement, has block scope,
and is only visible within the specific block in which it
is declared, but not outside it. Variables with block
scope are known as local variables.

16

int foo; // global variable

int some_function ()
{

int bar; // local variable
bar = 0;

}

int other_function ()
{

foo = 1; // ok: foo is a global
variable

bar = 2; // wrong: bar is not
// visible here

}

Namespace
• If our code base includes multiple libraries there may be

name conflicts.

• Namespaces are used to organize code into logical groups
and to prevent name collisions that can occur especially
when your code base includes multiple libraries.

• Namespaces allow us to group named entities that otherwise
would have global scope into narrower scopes, giving them
namespace scope.

• General syntax:

namespace namespace_name

{

members

}

• Members can be constants, variables, functions, classes, or
another namespace (nested namespaces) 17

namespace myns
{

const int N = 100;
int count = 0;
void printResult();

}

Example:

Namespace
• The scope of a namespace member is local to that

namespace. All identifiers at namespace scope are
visible to one another without qualification.

• Members are not visible outside its namespace.

• Everything not declared in another namespace/scope
is in the global (program-wide) namespace.

• Two ways to access a namespace member outside its
namespace:
• Use namespace_name::identifier syntax

• Use the using keyword to access specific or all members of
a namespace

18

namespace myns
{

const int N = 100;
int count = 0;
void printResult(){
cout<<N;
}

}

Example:

Example

myns::N

Expression to access N:

myns::printResult();

Expression to invoke
printResult():

Scope resolution operator

19

namespace myns
{

const int N = 100;
int count = 0;
void printResult(){
cout<<N;
}

}

Example

20

// namespaces
#include <iostream>
using namespace std;

namespace foo
{

int value() { return 5; }
}

namespace bar
{

const double pi = 3.1416;
double value() { return 2*pi; }

}

int main () {
cout << foo::value() << '\n';
cout << bar::value() << '\n';
cout << bar::pi << '\n';
return 0;

}

5
6.2832
3.1416

A Large C++ Program

Header files
from standard
C++ libraries

.h

.hh

.hpp

Own header files

.cpp Source files

21

Program Structure

• A typical C++ program consists of
• 1 or more header files

• 1 or more C++ source files

#include <iostream>

int main(void)
{

std::cout << "Hello world\n";

return 0;
}

Preprocessor directive to include
iostream header file which contains
std::cout

main function definition, invoking
std::cout to display “Hello,
world”, and return 0

22

Another example program (C++)
/* Program to calculate the area of a circle */
#include <iostream>
#define PI 3.14

float sq(float);

int main(void)
{

float radius, area;

/* Ask user to input */
std::out << "Radius = ";
std::in >> radius;

area = PI * sq(radius);
std::out << "Area = " << area << "\n";
return 0;

}

float sq(float r)
{

return (r * r);
}

Preprocessor directives

Function prototype

main
function

Function definition

23

Classes

Classes generalizes user defined data types in an object-oriented
sense:

• Classes are types representing groups of similar instances

• Each instance has certain fields that define it (instance variables)

• Instances also have functions that can be applied to them– also known as
methods in OOP

• Access to parts of the class can be limited

Classes allow the combination of data and operations in a single unit

24

Defining a Class

• A class is a collection of fixed number of components called
members of the class

• General syntax for defining a class:

• class_member_list consists of variable declarations and/or
methods

class class_identifier {
class_member_list

};

25

Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

Member access specifiers

Possible specifiers:
• private
• protected
• public

26

Member Access Specifier

• Private members – can only be accessed by member functions
(and friends) and not accessible by descendant classes

• Public members – can be accessed outside the class and inherited
by descendant classes

• Protected members – can only be accessed by member functions
(and friends) and inherited by descendant classes

• When member access specifier is not indicated, default access is
private

27

Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

Constructors
• Named after class name
• Similar to Java.

When class performs dynamic
memory allocation, destructor
is also needed

28

Next Lecture

• More on Classes in C++

29

