
Week 9 Lecture 2

NWEN 241
Systems Programming

Alvin Valera
alvin.valera@ecs.vuw.ac.nz

1

Content

• More on Classes in C++

2

Recap: Classes

Classes generalizes user defined data types in an object-oriented
sense:

• Classes are types representing groups of similar instances

• Each instance has certain fields that define it (instance variables)

• Instances also have functions that can be applied to them– also known as
methods in OOP

• Access to parts of the class can be limited

Classes allow the combination of data and operations in a single unit

3

Recap: Defining a Class

• A class is a collection of fixed number of components called
members of the class

• General syntax for defining a class:

• class_member_list consists of variable declarations and/or
methods

class class_identifier {
class_member_list

};

4

Recap: Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

Member access specifiers

Possible specifiers:
• private
• protected
• public

5

Recap: Member Access Specifier

• Private members – can only be accessed by member functions
(and friends) and not accessible by descendant classes

• Public members – can be accessed outside the class and inherited
by descendant classes

• Protected members – can only be accessed by member functions
(and friends) and inherited by descendant classes

• When member access specifier is not indicated, default access is
private

6

Recap: Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

Constructors
• Named after class name
• Similar to Java.

When class performs dynamic
memory allocation, destructor
is also needed

7

• Default Constructors (Non – parameterized Constructor)
• Accepts no arguments
• class_name()

• Parameterized constructor
• Accepts arguments
• class_name(parameters)

• Copy constructor
• Copies another existing object
• class_name (const class_name &)

8

Types of Constructors

& - Reference operator, used to provide an
alternative name for an existing variable

9

//declare an instance (object) of this class

StudentInfo s1;

StudentInfo s2 (12, "John");

class StudentInfo {
int student_id;
string name;

public:
void print();
StudentInfo()
{

student_id = 0;
name="Sam"; }

StudentInfo(int, string);
};

StudentInfo::StudentInfo(int i,
string s){
student_id = i;
name = s;

}

Default Constructor

Parameterized Constructor

Example

Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

Member functions

const at end of function
specifies that member
function cannot modify
member variables

10

Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

Member variables

11

Example

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour = 0 ;
int minute = 0;
int second = 0;

};

Member variables

Default values for member
variables can be initialized
during declaration

12

Member Functions

• Member functions can be
declared in 2 ways:
• By specifying the function

prototype

• By specifying the function
implementation

• Java allows only the second
method

class Time {
public:

void print() const;
void set(int h, int m, int s) {

hour = h;
minute = m;
second = s;

}
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};
13

Implementing Functions Separately

• For member functions that are not implemented in the class
declaration, they must be implemented separately

class Time {
public:

void print() const;
void set(int h, int m, int s) {
hour = h;
minute = m;
second = s;

}
…

};

#include <cstdio>

void Time::print() const
{

printf("%2d:%2d:%2d", hour,
minute, second);

}

14

Inline Functions

• Including the implementation of a function within the class definition is an
implicit request (to the compiler) to make a function inline

• When a function is inline, the compiler does not make a function call
• The code of the function is used in place of the function call (function call is

replaced by function code and appropriate argument substitutions made)

• Compiled code may be slightly larger, but will execute faster because
function call overhead is avoided

• To explicitly request to make member functions inline
• Add inline keyword before return type in function declaration and

definition

15

Explicit Inline Request

• Add inline keyword before return type in function declaration and definition

class Time {
public:

inline void print() const;
void set(int h, int m, int s) {
hour = h;
minute = m;
second = s;

}
…

};

#include <cstdio>

inline void Time::print() const
{

printf("%2d:%2d:%2d", hour,
minute, second);

}

16

Inline Functions

• Not all inline requests are granted by the compiler

• Reasons for not granting inline requests:
• Function is recursive

• Function contains switch or goto statement

• Function return type is other than void, and the return statement doesn’t
exist in function body

• Function contains a loop (for, while, do-while)

• Function contains static variables

17

Example: Accessing Members

class Time {
public:

void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

// Creates instance using
// default constructor
Time myTime;

// Invokes member function
myTime.set(10, 30, 0);

// This is not allowed.
myTime.hour = 12;

Member access operator, assuming Time() and set() are defined18

Static Members

• C++ classes can contain static members

• A static member variable is a variable that is shared by all instances
of a class
• Non-static members are not shared: every object maintains a copy of non-

static data members

• Static member variables are often used to declare class constants

• A static member function is a special member function, which is
used to access only static data members

• Member functions and variables can be made static by using the
static qualifier

• Static members can be accessed using class name
19

Example

class Time {
public:
void set(int, int, int);
void print() const;
static int getCounter();
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;
static int counter;

};

Time::Time() {
hour = 0; minute = 0; second = 0;
counter++;

}

Time::Time(int h, int m, int s){
hour = h; minute = m; second = s;
counter++;

}
…
// Initialize static member variable
int Time::counter = 0;

// Define static member function
int Time::getCounter()
{
return counter;

}

20

Static members are only declared in a class declaration. They must be explicitly defined outside the class using the
scope resolution operator. The static keyword is only used with the declaration of a static member, inside the
class definition, but not with the definition of that static member

Example (continued)

#include <iostream>
using namespace std;

…

int main(void)
{

cout << Time::getCounter() << "\n";
Time t1;
cout << Time::getCounter() << "\n";
Time t2(10,0,0);
cout << Time::getCounter() << "\n";

return 0;
}

Output:
0
1
2

21

Overloading

• Create two or more members having the same name declared in
the same scope.

• C++ supports

• Function (Method) overloading

• Operator overloading

22

Function Overloading

• Two or more function with the same name, but different in parameters.

• Function overloading increases the readability of the program because you
don't need to use different names for the same action.

23

class Cal {

public:

int add(int a, int b) {

return a + b; }

int add(int a, int b, int c) {

return a + b + c; }

};

int main(void) {

Cal C; // class object declaration.

cout << C.add(10, 20) << " ";

cout << C.add(12, 20, 23);

return 0;

}

Output:
30 55

Operator Overloading

• Operators have different implementations (meanings) with different arguments

• The extraction operator >> and the insertion operator << are overloaded
• They perform the I / O operation based on the type of argument

• Operators can be overloaded to have different meaning for user defined classes
(will be covered later)

24

int a = 10, b = 20;

string s = "Hello", s1 = "World";

s = s + " " + s1;

a = a + b;

cout << "a = " << a << endl << "s = " << s;

Output:

a = 30
s = Hello World

Where to Declare and Implement Classes
and Member Functions
• Good programming practice is to declare the class in a header file

• Separate the implementation of the member functions (and
possibly constructors) in another source file

Class Declarations
Member Functions &

Constructors
Implementation

Header File Source File

25

Example

class Time {
public:
void set(int, int, int);
void print() const;
Time();
Time(int, int, int);

private:
int hour;
int minute;
int second;

};

time.h
…
#include "time.h"
Time::Time() {
hour = 0; minute = 0; second = 0;

}

Time::Time(int h, int m, int s){
hour = h; minute = m; second = s;

}

void Time::set(int h, int m, int s) {
hour = h; minute = m; second = s;

}

void Time::print() const {
printf("%2d:%2d:%2d", hour, minute, second);

}

time.cpp

26

Note other extensions can also be used. Common examples are .cc, .cp for source files; and
.hh, .hpp for header files.

Next Lecture

• Inheritance

• Containers

27

