
Week 10 Lecture 2

NWEN 241
Systems Programming

Alvin Valera
Alvin.valera@ecs.vuw.ac.nz

1

Content

• Structures in C++

• Containers

• File Handling

2

Structures in C++

3

Structure in C vs Structure in C++

• C++ structures adds extra features to C structures

• Same declaration syntax

• C++ structures can –
• have functions as members

• treated like a built-in data type

• be extended (supports inheritance)

• define access specifiers (public, private, protected)

4

Structure in C vs Structure in C++

• C++ structures adds extra features to C structures

• Same declaration syntax

• C++ structures can –
• have functions as members

• treated like a built-in data type

• be extended (supports inheritance)

• define access specifiers (public, private, protected)

5

struct S {
int a;
int b;
void set() {
a = 10;
b = 20;

}
};

Structure in C vs Structure in C++

• C++ structures adds extra features to C structures

• Same declaration syntax

• C++ structures can –
• have functions as members

• treated like a built-in data type

• be extended (supports inheritance)

• define access specifiers (public, private, protected)

6

struct S {
int a;
int b;
void set() {
a = 10;
b = 20;

}
};

struct S s1;
S s1;

Structure in C vs Structure in C++

• C++ structures adds extra features to C structures

• Same declaration syntax

• C++ structures can –
• have functions as members

• treated like a built-in data type

• be extended (supports inheritance)

• define access specifiers (public, private, protected)

7

struct Base
{

:
:

};

struct Derived: Base {
:

};

Structure in C vs Structure in C++

• C++ structures adds extra features to C structures

• Same declaration syntax

• C++ structures can –
• have functions as members
• treated like a built-in data type
• be extended (supports inheritance)
• define access specifiers (public, private,

protected)

Members are public by default
8

struct Base {
public:

int a;
private:

int b;
protected:

int c;
};

struct Derived: Base {

}

Containers

9

Generic Programming

• Generic programming involves writing code in a way that is independent of
any particular type

• It allows type as a parameter to methods and classes

• A type parameter may be a primitive / built-in type such as int or double or a
user defined type such as class or structure

• Generics eliminates the need to write different functions for different data
types: integer, string or a character

• Generics can be implemented in C++ using Templates. Templates allow us to
create a single function or a class to work with different data types

10

vector<int>

• The C++ standard library provides a wide range of facilities that are
usable in standard C++

• A large part of the C++ library is based on the Standard Template
Library (STL)

• STL has four major components:
• Containers

• Algorithms

• Iterators

• Function Objects

11

C++ Standard Library

Containers

• Containers are used to manage collections of objects of a certain kind

Algorithms

• Algorithms act on containers

• Independent of containers

Iterators

• Generalized pointers that facilitate use of containers

• Iterators are used to step through the elements of collections of objects. These
collections may be containers or subsets of containers

Function Objects

• Allows an object to be invoked or called as if it were an ordinary function
12

STL Components

Containers

• Containers or container classes store objects and data

13

Containers

Sequence AdaptersAssociative Unordered

Arrays

Vector

List

Deque*

Queue

Priority Queue

Stack

Unordered Set

Unordered Map

Unordered Multi-
Set

Unordered Multi-
Map

Set

Map

Multi-set

Multi-map

Vector
• One of the containers is Vector.

• Defined in <vector>

• Same as dynamic arrays with the ability to resize itself automatically when
an element is inserted or deleted, with their storage being handled
automatically by the container.

• Vector elements are placed in contiguous storage.

• The capacity of the vector is decided by the compiler (implementation
dependent). It is generally bigger than the size of elements in it.

• This gives the ability to quickly insert an element to the end or remove the last
one, just by keeping track of the number of elements.

• Vectors also have safety features that make them easier to use than arrays,
automated bounds checking and memory management

14

v.end()v.begin()

v.size()

capacity()

527

Vector
• From time to time the size of the array may not be enough, so a new bigger one is

allocated, the older elements are copied to the new one, and the old one will be
destroyed.

• Inserting at the end takes differential time, as sometimes there may be a need of
extending the array.

• Removing the last element takes only constant time because no resizing happens.

• Inserting and erasing at the beginning or in the middle is linear in time.

• Compared to arrays, vectors consume more memory in exchange for the ability to
manage storage and grow dynamically in an efficient way.

15

Initializing a vector

16

When we define a vector, we can give it an initial size (initial number of elements):

An explicit size is enclosed in ordinary parentheses, e.g., (23)

By default the elements are initialized to the element type’s default

If we don’t want the default value, we can specify one as a second argument

vector<int> v1 = {1, 2, 3, 4 }; // size is 4

vector<Shape∗> v3(23); // size is 23; initial element value: nullptr

vector<double> v4(32,9.9); // size is 32; initial element value: 9.9

vector<double> v5(v4); // a copy of v4

Example

17

#include <iostream>
#include <vector>

int main(){
vector <int> v ={1,2,3,4,5};

cout<<"Incrementing the vector by 1:"<<endl;

for (std::vector<int>::iterator it = v.begin() ; it != v.end(); ++it){
*it = *it + 1;
std::cout << ' ' << *it;

}
}

Output:
Incrementing the vector by 1:
2 3 4 5 6

can also use auto – the auto keyword dynamically
determines the data type of the assigned value

Accessing members of a vector

18

for (range_declaration : range_expression)loop_statement

for (vector<Entry>::iterator it = book.begin() ; it != book.end(); ++it)
{

cout<< it->name <<" "<< it->number << endl;
}

a declaration of a named variable, whose type is the type of
the element of the sequence represented by
range_expression, or a reference to that type. Often uses the
auto specifier for automatic type deduction.

any expression that represents a suitable
sequence or a braced-init-list.

void print_book(vector<Entry> & book)
{

for (const auto& x : book)
cout << x.name <<" "<<x.number << endl;

}

struct Entry { string name; int number; };
//book is a vector of Entries

Range-based
for loop

19

Vectors

Iterators

begin() Returns an iterator pointing to the first element in
the vector

end() Returns an iterator pointing to the theoretical
element that follows the last element in the
vector

Reverse Iterators

rbegin() Returns a reverse iterator pointing to the last
element in the vector (reverse beginning). It
moves from last to first element

rend() Returns a reverse iterator pointing to the
theoretical element preceding the first element in
the vector (considered as reverse end)

https://en.cppreference.com/w/cpp/container/vector

20

Basic Vector Operations

capacity

empty() checks whether the container is empty

size() returns the number of elements

resize() resizes the container so that it contains n elements

capacity()
returns the number of elements that can be held in
currently allocated storage

shrink_to_fit() reduces memory usage by freeing unused memory

https://en.cppreference.com/w/cpp/container/vector

21

Basic Vector Operations

Element
access

at()
access specified element with bounds checking
(throws exception when a non-existent member is
accessed)

operator[] access specified element (does not do range checking)

front() access the first element

back() access the last element

https://en.cppreference.com/w/cpp/container/vector

22

Basic Vector Operations

Modifiers

assign() assigns new content

insert() inserts elements

erase() erases elements

clear() removes all elements from the vector

push_back()
Adds a new element at the end of the vector,
after its current last element

pop_back()
removes the last element in the vector,
effectively reducing the container size by
one.

emplace()
Adds a new element at a given position in
place (without requiring creation of a
temporary object)

https://en.cppreference.com/w/cpp/container/vector

class A {
int a;
int b;

public:
A(int x, int y):a(x),b(y){}
A(){}

void show() {
cout<<"a = "<<a<<" "<<"b =
"<<b<<endl;

}
};

23

int main(void) {
vector<A> vecA;
for (int i = 0; i <= 4; i++) {
vecA.push_back(A(i,i));

}
cout<<"Size: "<<vecA.size()<<endl;
cout<<"Capacity: "<<vecA.capacity()<<endl;

cout<<"Element at Loc 0"<<endl;
vecA[0].show();

cout<<"Element at last Loc"<<endl;
vecA.back().show();

cout<<"Inserting a new element in the
beg"<<endl;
A a1(-1,-1);
vecA.insert(vecA.begin(),a1);

cout<<"Element at Loc 0 is: "<<endl;
vecA.at(0).show();
return 0;

}

Size: 5
Capacity: 8
Element at Loc 0
a = 0 b = 0
Element at last Loc
a = 4 b = 4
Inserting a new element in the beginning
Element at Loc 0 is:
a = -1 b = -1

File Handling in C++

24

Recap: I/O Basics

• C/C++ I / O are based on streams, which are sequence of bytes flowing in and
out of the programs

• Streams acts as an intermediaries between the programs and the actual IO
devices

25

C++ Program

Input Stream

Output Stream

Input Device
(Keyboard, file etc.)

Output Device
(console, file etc.)

With input streams, the
extraction operator (>>) is used
to remove values from the
stream

With output streams, the
insertion operator (<<) is used
to put values in the stream

C++ IO operations are device independent. The same set of operations can be applied to different
types of IO devices.

<ios>

ios_base

ios

<istream>

istream

iostream

<ostream>

ostream

<iostream>

cin

cout, cerr,

clog

<fstream>

ifstream

ofstream

fstream

A stream is represented by an object of a particular class.

Stream Hierarchy

27

File Streams

• ifstream – stream class to read from files

• ofstream – stream class to write to files.

• fstream - stream class to both read (from) and write (to) files.

• The stream objects cin, cout, cerr and clog are declared in iostream
header file and are automatically added to our program, when iostream
header file is included in our program.

• In contrast, we are responsible for creating and setting up our own file streams.

Steps for File IO:

1. Create file stream objects

2. Open the file

28

ifstream fsIn; //input

ofstream fsOut; // output

fstream fsBoth; //input & output

fsIn.open("data.txt",fileopenmode);

File open mode

ifstream fsIn("data.txt", fileopenmode);

OR Combine the two steps

Name Description

ios::in Open file to read (default for ifstream)

ios::out Open file to write (default for ofstream)

ios::app Output operations happen at the end of the file, appending to its existing
contents.

ios::ate The stream’s position indicator is set to the end of the file.

ios::trunc Deletes all previous content in the file (empties the file)

ios::nocreate If the file does not exists, new file is not created

ios::noreplace If the file exists, trying to open it with the open() function, returns an error.

ios::binary Opens the file in binary mode.

29

ios::in is default for ifstream
ios::out is default for ofstream
ios::in |ios::out is the default for fstream

File Open Modes

30

Next Lecture

• File Handling (continuation)

• Dynamic Memory Allocation

