
Week 10 Tutorial

NWEN 241
Systems Programming

Alvin Valera
Alvin.valera@ecs.vuw.ac.nz

1



std::string in C++
• C++ has a string class type that

implements string datatype

• Not exactly similar to Java String class
• Java strings are immutable reference

types; C++ strings are mutable!

• Wide range of operators and member
functions are available for variables
declared as string type

• Include <string> header file

• Use standard namespace

#include <iostream>
#include <string>
using namespace std;

int main (void)
{
string s1, s2; // empty
s1 = "Hello";
s2 = "Hello World !";

cout << "String 1: " << s1 << "Length: "
<< s1.length() << endl; 

cout << "String 2: " << s2 << “Length: " 
<< s2.length() << endl;

return 0;
}



Character Array vs String Class in C++
String Operation Character Array String class

Copy string s2 into string s1. strcpy(s1, s2); s1 = s2;

Concatenates string s2 onto the

end of string s1.

strcat(s1, s2); s1 + s2;

Returns the length of string s1. strlen(s1); s1.length();

Returns 0 if s1 and s2 are the

same; less than 0 if s1<s2; greater

than 0 if s1>s2.

strcmp(s1, s2); ==, <=, >, and >= 
operators 
Or s1.compare(s2)

Returns a pointer to the first

occurrence of character ch in

string s1.

strchr(s1, ch); s1.find(ch)

Returns a pointer to the first

occurrence of string s2 in string s1.

strstr(s1, s2); s1.find(s2);

4



Inheritance - Extending Classes

• Syntax of extending a single base class:

• subclass_name is the identifier given to the sub class being declared

• access_mode controls the access of inherited fields

• baseclass_name is the identifier of the super class being extended

class subclass_name : access_mode baseclass_name {
class_member_list

};

5



Let’s write some code

• Rewrite the class GameCharacter (discussed in W9 Tutorial) such 
that the members level, health and experience can be 
inherited.

• For the same class, rewrite the parameterized constructor to use an 
initializer list

6



Let’s write some code

• Extend the class GameCharacter as follows:
• Call the sub-class Mage, with a parameterized constructor to take in name
• Mage should preserve the access specifiers of the parent
• It should have a new private attribute called mana (magical energy)
• It should have two public methods called castSpell() and 
renegerateMana()

• It should override the display() method
• Write a C++ program (with main() function) to use the new class

• Make the display() method in GameCharacter virtual
• What happens if Mage does not implement display()?

• Make the display() method in GameCharacter pure virtual
• What happens if Mage does not implement display()?

7



Vector
• One of the containers is Vector.

• Defined in <vector>

• Same as dynamic arrays with the ability to resize itself automatically when
an element is inserted or deleted, with their storage being handled
automatically by the container.

• Vector elements are placed in contiguous storage.

• The capacity of the vector is decided by the compiler (implementation
dependent). It is generally bigger than the size of elements in it.

• This gives the ability to quickly insert an element to the end or remove the last
one, just by keeping track of the number of elements.

• Vectors also have safety features that make them easier to use than arrays,
automated bounds checking and memory management

8

v.end()v.begin()

v.size() 

capacity()

527



Example

9

#include <iostream>
#include <vector>
using namespace std;

int main(void)
{

vector <int> v ={1,2,3,4,5};

cout<<"Incrementing the vector by 1:"<<endl;

for (vector<int>::iterator it = v.begin() ; it != v.end(); ++it){
*it = *it + 1;
cout << ' ' << *it;

}
}

Output: 
Incrementing the vector by 1:
2 3 4 5 6 

can also use auto – the auto keyword dynamically 
determines the data type of the assigned value



Let’s write some code

• Write some code to demonstrate different ways to initialize a vector
• Use iterator to go through the vector

• What happens if we change the iterator type to auto?

10



Accessing members of a vector 

11

for (range_declaration : range_expression )loop_statement

for (vector<Entry>::iterator it = book.begin() ; it != book.end(); ++it)
{

cout<< it->name <<" "<< it->number << endl;
}

a declaration of a named variable, whose type is the type of
the element of the sequence represented by
range_expression, or a reference to that type. Often uses the
auto specifier for automatic type deduction.

any expression that represents a suitable 
sequence or a braced-init-list.

void print_book(vector<Entry> & book) 
{ 

for (const auto& x : book) 
cout << x.name <<" "<<x.number << endl; 

} 

struct Entry { string name; int number; };
//book is a vector of Entries

Range-based 
for loop



Let’s write some code

• Write some code to demonstrate different ways to initialize a vector
• Use iterator to go through the vector
• What happens if we change the iterator type to auto?
• What happens if you access an element using [] that is out of bounds?
• How about if you use at()?

• Rewrite above code to use new for-loop

• Modify above code as follows:
• Insert a new element at the end of the vector
• Insert a new element at the beginning

12



Let’s write some code

• What happens if you remove a vector element while traversing it 
with an iterator?

13


