
NWEN	243	Lab	1	-	A	Simple	Cypher	(2.5%)	

Marked by demonstration in your scheduled lab, 24 July – 4 August 2017

Experience	thinking	about	security	
• Write a small program to encode a block of plain-text using a modified Caeser cypher.
• Write a small program to decode a block of cypher-text using a modified Caeser cypher.

Requirements	
• This lab an individual lab written in C.
• We will be writing programs that you execute from the shell command line.
• You must demonstrate during your scheduled lab session in the week: 20-24th July.
• You are to write two small C programs that will

1. encode using your key, and
2. decode using the same key –

 using a modified Caeser cypher.

For example

%>cat file.txt | encode password | decode password > newfile.txt
// I should then be able to execute diff, and see no changes, e.g.:

%> diff –i file.txt newfile.txt

The	Modified	Cypher	

The modified Caeser you will be implementing is a combination of Caeser cypher I and II.
	
Caeser cypher I used an offset alphabet, where the mapping between plain and enciphered characters
was determined by a numerical offset, in the following example 13, so A maps to M:

Plain A B C D E F G H …
Enciphered M N O P Q R S T …

The Caeser cypher II uses a ‘key word’ where it is placed at the start of the encipher mapping – sans
duplicates, the key in this example is “I came, I saw” (without punctuation or whitespace etc.):

Plain A B C D E F G H …
Enciphered I C A M E S W X …

The next letter in the encipher mapping is the next non duplicate letter of the alphabet – in this case X
follows W, and it is not a duplicate. This is followed by Y, Z, A, B, … Note A is not used as it is a
duplicate.

In our modified cypher, what we will do is use an offset (like cypher I) which will be the length of the
key (including duplicates and whitespace and punctuation, i.e., the key “I came, I saw” has a total length
of 13. From this offset of 13, we will then apply a normal Caeser cypher II, as in the following example:

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

H J K L N O P Q R T U V I C A M E S W X Y Z B D F G

Note: numbers included only for your reference

So, ‘Hello’ – would encode to: ‘QNVVA’

Assumptions	
You may assume text is in ASCII and that you do not need to preserve case (just make it all upper case
– note ‘-i’ option to diff above) encode symbols, punctuation, spaces or whitespace in general (i.e just
pass it through without change), e.g.: “don’t do it” becomes “efh’w ef xw”

Skeleton	Code	
A small skeleton will be provided on the course web page to ease you into this project. No IDE is
provided, the command line and any editor (vi, emacs, kwrite) will be sufficient. You can compile your
code using the command line:

%> gcc encode.c –o encode

Submission	&	Marking	
	
• This project is marked by demo. It needs to be shown to your tutor by the end of your scheduled

lab sessions during 24 July – 4 August 2017. You may demo your code in the earlier lab session
if complete.

• A successful demonstration will award the full 2.5% for this project.
• You should expect to explain briefly your code to your tutor.
• If you have not successfully demonstrated your work by the end of your scheduled lab sessions

during 24 July – 4 August 2017, your tutor may award partial marks.

	

