
	 1	

NWEN 243 Lab Project 8: Develop a simple Web Service Requester and
Provider

In a networked environment, multiple software systems may often need to exchange
information with each other. Web Service stands for an important technology to
facilitate such information exchange especially over the Internet. In general terms, the
software system that requests data is called a service requester, whereas the software
system that processes the request and provides the data is called a service provider. In
this lab project, you will build a simple service requester and service provider using
Web Service and Java. Detailed steps are described below.

Objectives

• Experience the Web Service concept and technology
• Develop simple Web Service provider and requester

Requirements

• You will need to use Eclipse IDE for Java EE Developers to develop your
Web Service project.

• You will need to use Apache Tomcat 6.0 to host your Web Service.
• You are recommended to demonstrate your work to your lab tutor.

Exercise

Step 1: Create a dynamic Web project using Eclipse IDE for Java EE Developers.

	 2	

Step 2: Set up the project with the following settings:

• Define a project name (e.g., MyWebService)
• Choose target runtime to be “Apache Tomcat v6.0”.
• Choose the dynamic web module version to be “2.5”.
• Choose the configuration to be the “default configuration for apache

tomcat v6.0”.

NOTE:
o If the target runtime shows “NONE” and has no options of “Apache

Tomcat 6.0”, you may choose to create a new runtime.

	 3	

o Select “Apache Tomcat v6.0”

o Setup the path to the tomcat directory “apache-tomcat-6.0.41”

provided through this project on the course website.

Step 3: Copy all important jar files (provided through this project on the course
website) to “YOUR_PROJECT/WebContent/lib/”.

	 4	

• jaxb-api.jar, jaxb-impl.jar, jaxws-rt.jar, stax-ex.jar, streambuffer.jar, gmbal-
api-only.jar, ha-api.jar, jaxb-api.jar, management-api.jar, policy.jar, stax2-
api.jar

Step 4: Create a package with your preferred name (e.g., example) under the directory
“Java Resources/src/” in your project (e.g., MyWebService).

Step 5: Define a Java Interface (e.g., WebServiceInterface) by following the sample
code given below.

package example;

import javax.jws.WebService;

@WebService
public interface WebServiceInterface {

//Your own function signature goes here
public String greet(String clientName);

}
	

	 5	

Step 6: Define a Java class (e.g., WebServiceImpl) that implements the interface
defined in step 5 by following the sample code below.

Step 7: Modify web.xml

The file web.xml can be found in “PROJECT/WebContent/WEB-INF”. Modify this
file according to the template given below.

package example;

import javax.jws.WebService;

@WebService(
 endpointInterface = "example.WebServiceInterface",
 portName = "webservicePort",
 serviceName = "WebService")
public class WebServiceImpl implements WebServiceInterface {

 @Override
 public String greet(String clientName) {
 // TODO Auto-generated method stub
 // your own function implementation goes here

 return "Hi," + clientName + ", this is WebService!";
 }
}
	

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 id="WebApp_ID" version="2.5">
 <listener>
 <listener-
class>com.sun.xml.ws.transport.http.servlet.WSServletContextListener</listener-
class>
 </listener>

 <servlet>
 <servlet-name>WebServiceInterface</servlet-name>
 <servlet-
class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>WebServiceInterface</servlet-name>
 <url-pattern>/WebServiceInterface</url-pattern>
 </servlet-mapping>
</web-app>	

	 6	

Step 8: Create a new XML file “sun-jaxws.xml” under the directory
“/WebContent/WEB-INF/” of your project. Please prepare your file by following the
example below.

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime"
version="2.0">
 <endpoint
 name="WebServiceInterface"
 implementation="example.WebServiceImpl"
 url-pattern="/WebServiceInterface"
 />
</endpoints>	

	 7	

Step 9: Generate JAXB classes. JAXB stands for the Java Architecture for XML
Binding. You will need to perform the following steps:

• Copy interface and implementation class files (e.g., WebServiceInterface.class
and WebServiceImpl.class) in the directory
“/YOUR_PROJECT/build/classes/” to a temp (and originally empty) directory
(e.g., ~/temp/). If these class files are located in a package (e.g., example/),
you need to copy the package as well.

	 8	

• Change working directory to the temp directory.

• Execute the command “wsgen -cp . -keep WebServiceImpl”, where
WebServiceImpl stands for the Java class that implements the service
interface. The package name should also be included in the command if the
implementation class is defined in a package (e.g., “wsgen -cp . -keep
example.WebServiceImpl”).

	 9	

• At this stage, you should see four files (e.g., Greet.class, GreetResponse.class,
Greet.java, GreetResponse.java) in the directory “jaxws”. Delete the class files
(e.g., Greet.class and GreetResponse.class). Then copy the entire package
(e.g., jaxws) containing two java source files (e.g., Greet.java and
GreetResponse.java) to your project directory - “/YOUR_PROJECT/Java
Resources/src/example/”.

	 10	

Step 10: Define Apache Tomcat v6.0 Server.

• Create a new server

	 11	

• Setup the server

• Move your WebService project to right side - “Configured”.

	 12	

Note: Please do not start your Tomcat server at this stage.

Step 11: Deploy the Web Service by right clicking on your web project and choose to
run on server. Now you can open a browser and enter a URL (e.g.,
http://localhost:8080/MyWebService/WebServiceInterface) to check the WSDL
service description. If you can see the service description, it means that your Web
Service is running properly!

Step 12: Create a web service requester

Up to this point, you have successfully developed and deployed a Web Service
provider. Let us develop a web service requester program by following the sample
code below. Afterwards, please run your requester program as a normal Java
application and check whether it can receive correct response from your Web Service
provider.

	 13	

Step 13: Now you may have an idea of how to develop and deploy a simple Web
Service. Following this, please design and implement a Web Service that reports the
current temperature of any given city in the world.

Hand in

It is recommended (but not compulsory) for you to demo your work to your lab tutor
by the end of week 12 (the last teaching week). This involves running the Web
Service provider successfully and running the Web Service requester that will display
the desirable response received from the service provider.

You also need to submit your Web Service project online in the form of a zip file.
Please zip your entire eclipse project to make it easy for tutors to check your
submitted code. Please refer to the submission link for the online submission deadline.

No technical report is required for this lab. However you need to submit a PDF
document that includes your answers to all topic questions (topic questions are
provided through a separate PDF document retrievable from the lab project page of
our course website).

Grading

C grade – manage to define and implement a simple Web Service provider (e.g. the
greeting web service provider described above). The provider can be deployed
successfully on a Tomcat server.

B grade – manage to develop a simple Web Service requester successfully (e.g. the
greeting web service requester described above). Upon running the requester program,
desirable response can be received from the service provider.

A grade – manage to develop and deploy a weather report service provider
successfully. The service provider accepts city and country input and can provide
expected temperature output, as verified by the correspondingly service requester

	 14	

program. However, the temperature reported by the service provider is randomly
generated locally without accessing any information from the Internet.

A+ grade – the weather report service provider will provide the temperature
information based on data retrieved from the weather API provided by
https://openweathermap.org/api

Note: lab tutors will not provide support for the task for the A+ grade.

