
	 1	

NWEN	243	Networked	Applications	

Lab	6:	Building	a	TCP	Server	

Objectives 

• Experience using TCP 
• Achieve the completion of a TCP server 

 
Requirements 

• This is an individual lab written in C. 
• We will be writing programs that you execute from the shell command line. 
• Your server will need to handle multiple simultaneous connections.  In C, we 

will use fork() to create a new process to service each connection.  You will be 
supplied the code for this in the skeletons. 

• You are recommended (but not compulsory) to demonstrate your work to your 
lab tutor AND you must submit your program through the online submission 
system. 
 

Preliminaries 

• TCP – the transmission control protocol is a reliable byte ordered transport 
layer service. Delivery and order are guaranteed. 

• To use TCP you will need to use the Socket API.  The socket API is modeled 
on the file system, so uses read/recv and write/send to access the network. 

 
• You should use your TCP client developed in Lab 5 to connect to and to test 

your server. Also, you should MODIFY your TCP client to include loops so 
that a series of 100 requests can be sent in sequence to the TCP server. Please 
make sure to introduce at least 3 seconds of delay before next iteration of the 
loop (i.e. sending next request to the TCP server). 

 
• You should run 5 TCP clients (with loops) concurrently to ensure your TCP 

sever works properly (can handle all requests from all TCP clients correctly). 
 
The Exercise 
Your task is to complete a TCP server program that will  

1. Wait for a client to connect. 
a. Fork a worker process  

i. Service the client using the connection socket. 
ii. Close the connection socket and exit process 

b. Loop back around for the next connection. 
 

What will your server do?  You can duplicate the SHOUTING server if you wish, but 
you may also implement some other service if you wish – such as serving a file (a 
little dangerous) or reversing the client’s string, or anything else simple – this is not 
the focus of the exercise.  



	 2	

 
Resources 

• There is a C skeleton for TCP server provided for this exercise. 
• Look at our tutorial notes on socket programming. You can find in the notes a 

diagram detailing the steps that a TCP server takes as well as sample code for 
building concurrent servers.  Use this information to guide your program. 

 
Run your Server 
Use: 
 
%>./server portnum 
 
Note that we take the port number as a command line argument, this is because you 
need to specify it for the client – you could use a random one, but it is easier when 
testing with your client to use a fixed port number.  Make sure you check the port is 
not already used, and kill old servers that you have left sitting around. 
 
Topic questions (1/2 mark each) 
 
Please include your answers to theses questions in a separate PDF document, and 
ensure you submit it at the same time as your project. 
 
Q1. Explain the concept of out-of-band data in socket communication. Will out-of-
band data always be delivered reliably? 
 
Q2. Is it possible to force a socket to empty its data in the buffer? If so, how to do 
that? 
 
Q3. Explain when SYN segment is used in TCP communication. Can any SYN 
segment carry data payload and why? 
 
Q4. Consider hosts A and B communicating over a TCP connection. Assume 
unrealistically that the initial sequence number for each of A and B is 0 (after the 
handover process). Assume that all segments sent between A and B have 20 byte 
headers. A sends B a segment with a 100 byte payload, B responds with a segment 
with a 100 byte payload and then another segment with a 200 byte payload, and 
finally A responds with a segment with a 50 byte payload. Give the value of the 
sequence number field and acknowledgement number field for each segment. 
 
Q5. Suppose that a socket client running on an ARM processor is receiving an integer 
from a socket server running on an INTEL processor. Suppose also that the ARM 
processor stores an integer in 32 bits and the INTEL processor stores an integer in 64 
bits. Can the socket client receive the correct integer from the socket server? Make 
sure that you explain your answers. 
 
Hand in 
1. You are recommended to demonstrate your working program to your lab tutor. 
2. You should also submit your FULLY COMMENTED server code.  Comments 



	 3	

must be added to make it clear that we understand what is going on. 
3. No lab report is needed. 
4. Include in your submission a PDF document with your answers to the topic 

questions. 
5. Online submission is due on Sunday 1 October 2017 at 23:59. 
6. Marking (total of 10%) 

a.   The questions are worth 2.5 marks. 
b. The working code is worth 7.5 marks (see below for more details on grading 

for the code) 
 
Grading for the code 
 

• C grade: the TCP server program can successfully support a single TCP client. 
• B grade: the TCP server program can successfully support 5 concurrent TCP 

clients. 
• A grade: fully commented submitted code shows your good understanding of 

TCP server code. Also the TCP server code is implemented to a high standard 
(well formatted/structured, careful error handling and reporting, well 
commented). 

 
Useful stuff for C 
 
int socket(int domain, int type, int protocol);   
 

socket() creates an endpoint for communication and returns a socket 
descriptor. The domain parameter specifies a communication domain; this 
selects the protocol family which will be used for communication.  You 
should use AF_INET.  This is the same for a server and a client. 

 
int bind(int sockfd, const struct sockaddr *my_addr, socklen_t addrlen); 
 

bind() gives the socket sockfd the local address my_addr. my_addr is addrlen 
bytes long. Traditionally, this is called "assigning a name to a socket." When a 
socket is created with socket, it exists in a name space (address family) but has 
no name assigned.  It is necessary to assign a local address using bind() before 
a SOCK_STREAM socket may receive connections 
 

int listen(int sockfd, int backlog); 
 

To accept connections you first need to tell the socket to ‘listen’.  The backlog 
parameter defines the maximum length the queue of pending connections may 
grow to – set this to 5. 
 

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen); 
 

The accept() system call waits until there is a connection request, and then 
extracts the first connection request on the queue of pending connections, 
creates a new connected socket, and returns a new file descriptor referring to 
that socket.  The original socket sockfd is unaffected by this call. 

 



	 4	

int read(int sockfd, void *buf, int count); 

read() attempts to read up to count bytes from file descriptor fd into the buffer 
starting at buf. 
 

int write(int sockfd, const void *buf, int count); 
 

write() writes up to count bytes to the file referenced by the file descriptor fd 
from the buffer starting at buf. 
 

int close(int fd); 

close() closes a file descriptor, so that it no longer refers to any file and may 
be reused. 

Notes: 

1. Many functions return a value < 0 to indicate an error. You should check this. 

2. Make sure you don’t overflow any buffers, and limit the sizes correctly. 

	


