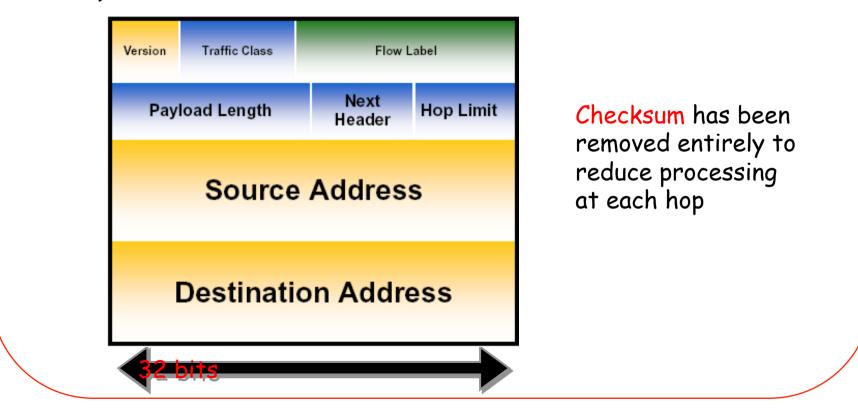

School of Engineering and Computer Science

<u>Multimedia applications</u>

- Streaming stored audio and video
 - Jitter
- Streaming of live audio and video
- Interactive audio and video
- Delay sensitive and loss tolerant
- Best effort delivery


How should the Internet better support multimedia?

- Laissez-faire
 - no major changes
 - more bandwidth from ISP when needed
 - content distribution (CDN), application-layer multicast
 - application layer
 - Overlay Networks
- Integrated services philosophy
 - Fundamental changes in Internet so that apps can reserve end-to-end bandwidth
 - Requires new, complex software in hosts & routers

- Differentiated services philosophy:
 - Fewer changes to Internet infrastructure, yet provide 1st and 2nd class service.

IPv6 packet

Traffic class: allocate different priority to packets based on applications *Flow Label:* identify datagrams in same "flow" (concept of "flow" not well defined)

Quick exercise

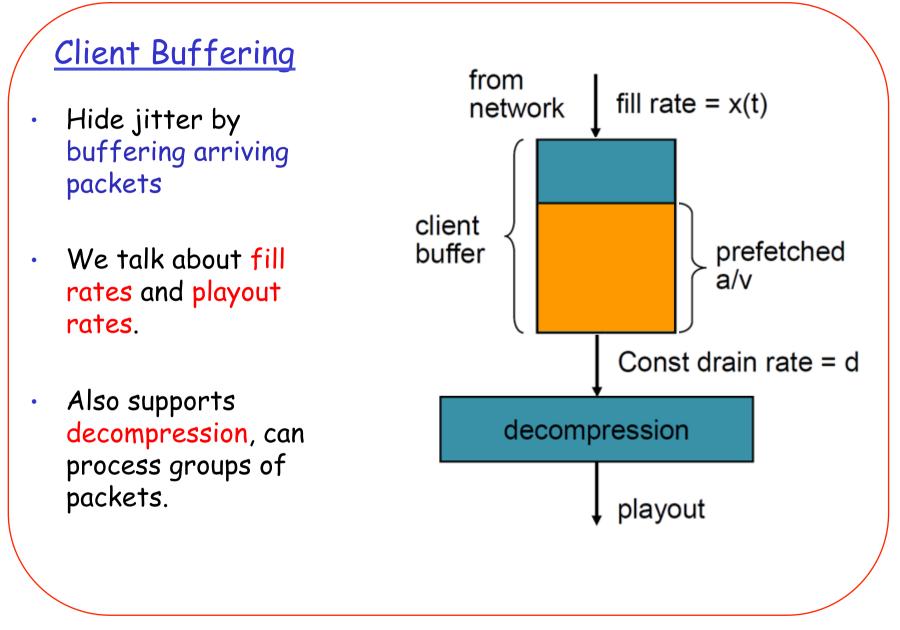
- The lack of _____ is the most common factor that impairs streaming media quality.
 - A. Network delay
 - B. Network bandwidth
 - C. Network security
 - D. Network administration

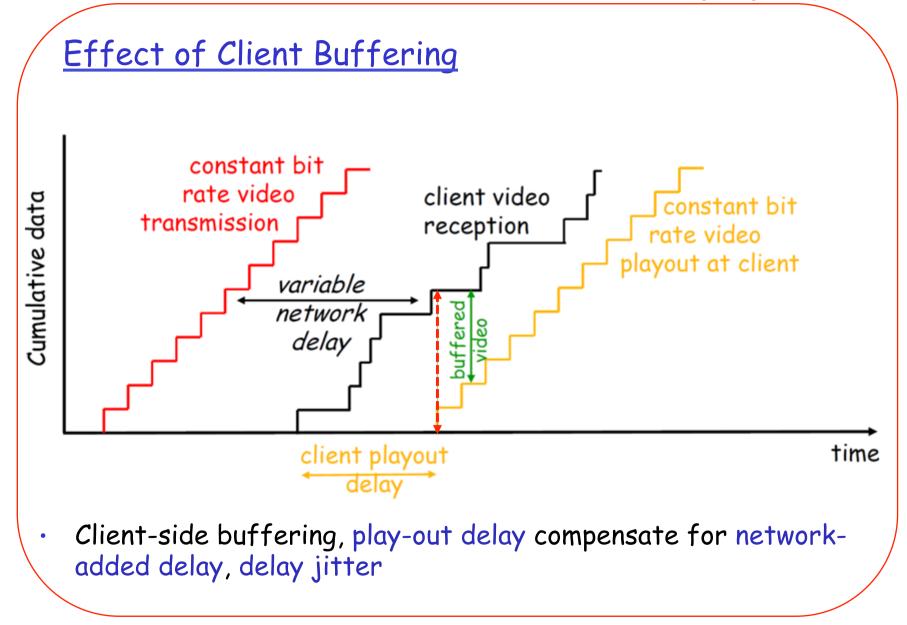
Implementing best-effort service

- Some problems to be solved.
 - Limited bandwidth compared to requirements.
 - 360p -> 720p -> 1080p
 - Random network delays
 - Packet loss

<u>Compression - reduce bandwidth use</u>

- Digitization -> conversion to bits.
 - = "Encoding"
- Consider problem of encoding an image:
 - 1024x1024 pixels in size.
 - 24 bits per pixel.
 - 3MB per image.
- Consider a video (frame = image):
 - 24 frames per second (at least).
 - 24 frames * 3 Mbytes = 72 MB per second.
 - 72 Mbytes per second = 576 Mbps.
 - 802.11g gives you a maximum of 54 Mbps
- We need compression!!


<u>Compression examples</u>


- Audio
 - Encoding techniques
 - Telephone (pulse code modulation) : 64 Kbps
 - CD (pulse code modulation) : 1.411 Mbps for stereo
 - Compression techniques
 - G.729 : 8 Kbps
 - MP3 : 112 or 128 Kbps for CD quality
- Video
 - MPEG2 : 3-6 Mbps for DVD quality
 - MPEG4: high-definition video media like Blu-ray Disc

http://www.dr-lex.be/info-stuff/videocalc.html

Quick exercise

- Which of the following statements are correct?
 - A. MPEG4 supports lossless video compression
 - B. MPEG4 supports lossy video compression
 - C. MPEG4 supports lossless audio compression
 - D. MPEG4 supports lossy audio compression

Quick exercise

- Which of the following activities do NOT rely on the playback buffer?
 - A. Reordering incoming chunks of multimedia content
 - B. Decompression
 - C. Cancel the playback process
 - D. Temporarily halt the playback of audio or video clip

<u>Causes of lost packets</u>

- Use of UDP (best-effort).
- TCP would avoid this, but too slow
- Besides humans can tolerate 1-10% loss!
- So aim is not no loss but to cope with some loss.
 - Conceal packet loss

Concealing packet loss

- Forward error correction
- Principle:

Add redundant information (but not too much)

- Simple XOR FEC scheme (1990):
 - Break transmission into groups of n packets
 - Every n-th packet, send a special n+1 packet
 - n+1 packet = previous packet XORed together
 - Should receiver lose any of the packets in the group, receiver can recover the missing packet by XORing the special packet with what has been received

Concealing Packet Loss

What is sent

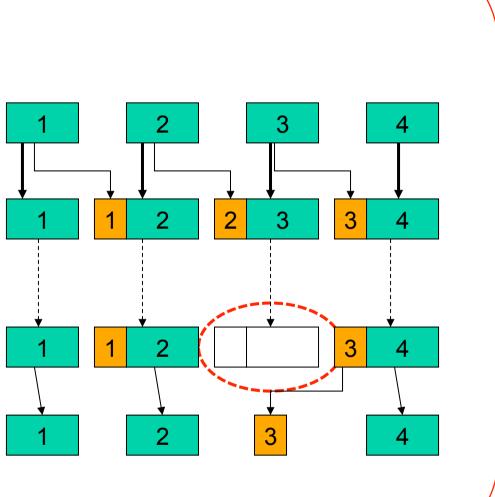
Packet I	0	T	I	I	0	I	0	I
Packet 2	0	0	I	I	0	0	0	0
XOR packet	0	Т	0	0	0	I	0	I

What is received

Packet I	0	T	I	T	0	I	0	I
Packet 2				L	.OST!!!			
XOR packet	0	T	0	0	0	T	0	T

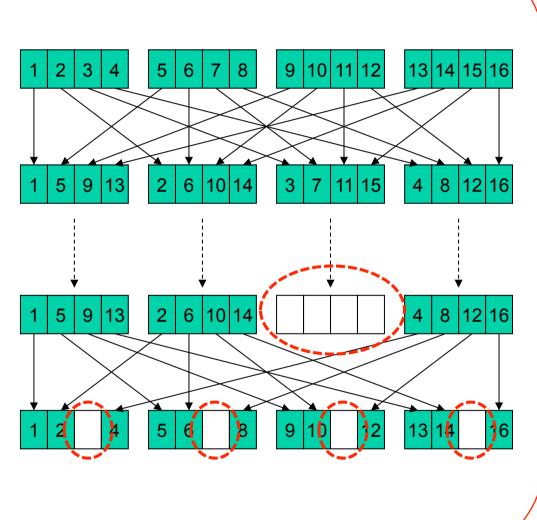
Reconstructing the lost packet

Packet I	0	Т	1	I	0	1	0	1	
XOR packet	0	Т	0	0	0	1	0	1	
Recovered packet 2	0	0	I	I	0	0	0	0	


What is sent								
Packet I	0	T.	1	1	0	1	0	1
Packet 2	٥	٥	1	1	٥	0	٥	0
- ` ´					•	et per g	group	
Pa (2) Wha Pa	t is th		ffect or	n playb	ack del			
Pa (2) Wha Pa					•		0	1
Pa (2) Wha Pa XOR packet	t is th	I I	ffect or	n playb	ack del			1
Pa (2) Wha Pa XOR packet Reconstructi	t is th	I I	ffect or	n playb	ack del			1
Pa (2) Wha	t is th 0 ng the	I I	ffect or	n playb	o o		0	

packet 2

Concealing packet loss


Alternative scheme

- High resolution stream
- Low resolution stream
- Carry redundant data with every packet.
- Redundant data is lower quality version of previous packet (for example, lower quality audio).

Interleaving

- Interleave so that if do lose packets, do not lose adjacent packets.
- Good: no extra data is transmitted.
- **Bad:** playback is delayed.

Summary: bag of tricks for media

- UDP to avoid TCP congestion control (delays) for time-sensitive traffic
- Client-side adaptive playout delay: to compensate for network delay
- Error recovery (on top of UDP)
 - FEC, interleaving
 - retransmissions, time permitting
 - conceal errors: repeat nearby data