
Topic questions (1/2 mark each) 
 
Please include your answers to theses questions in a separate PDF document, and 
ensure you submit it at the same time as your project. 
 
Q1. Explain the concept of out-of-band data in socket communication. Will out-of-
band data always be delivered reliably? 
 
Out-of-band data (called "urgent data" in TCP) looks to the application like a 
separate stream of data from the main data stream. This can be useful for separating 
two different kinds of data. 
 
Note that just because it is called "urgent data" does not mean that it will be delivered 
any faster, or with higher priority than data in the in-band data stream. Also beware 
that unlike the main data stream, the out-of-bound data may be lost if your 
application can't keep up with it. 
 
Q2. Is it possible to force a socket to empty its data in the buffer? If so, how to do 
that? 
 
Basically, you can't force it. TCP makes up its own mind as to when it can send data. 
Normally when you call write() on a TCP socket, TCP will indeed send a segment, but 
there's no guarantee and no way to force this. In practice, we can also indicate that 
we need data to be transmitted urgently. However, there is again no guarantee that 
socket will absolutely follow our instructions. 
 
Q3. Explain when SYN segment is used in TCP communication. Can any SYN 
segment carry data payload and why? 
 
SYN segment is used to establish TCP connections. SYN segment by right should not 
carry data payload because when it is used, the TCP connection hasn’t been fully 
established yet and therefore data communication is forbidden. 
 
(this part is optional) However, with new improvement to TCP, it is possible for SYN 
segment to carry data. But the data carried cannot be delivered to applications before 
the establishment of a connection. Meanwhile it is also important to note that, 
although this is considered as an enhancement, its support is limited in the Internet. 
 
Q4. Consider hosts A and B communicating over a TCP connection. Assume 
unrealistically that the initial sequence number for each of A and B is 0 (after the 
handover process). Assume that all segments sent between A and B have 20 byte 
headers. A sends B a segment with a 100 byte payload, B responds with a segment 
with a 100 byte payload and then another segment with a 200 byte payload, and 
finally A responds with a segment with a 50 byte payload. Give the value of the 
sequence number field and acknowledgement number field for each segment. 
 
A -> B 20-byte header + 100-byte payload, seq no=0, ack_no=0 
B -> A 20-byte header + 100-byte payload, seq_no =0, ack_no=100 
B -> A 20-byte header + 200-byte payload, seq_no=100, ack_no=100 
A -> B 20-byte header + 50-byte payload, seq_no=100, ack_no=300 



 
Q5. Suppose that a socket client running on an ARM processor is receiving an integer 
from a socket server running on an INTEL processor. Suppose also that the ARM 
processor stores an integer in 32 bits and the INTEL processor stores an integer in 64 
bits. Can the socket client receive the correct integer from the socket server? Make 
sure that you explain your answers. 
 
To make sure that the integer can be correctly transferred through the a socket, we 
need to ensure the following: 
 
1. The length of integer to be transmitted must be commonly agreed by the sender and 
receiver. For example, we can ask the sender to transmit only 32-bit integers 
although it supports integers up to 64 bits. 
 
2. The byte-order of each integer needs to be ensured. We need to first of all convert 
an integer to be sent to the network byte order. Later at the receiver side, we need to 
convert the integer received from the network byte order back to the host byte order. 
	

	

(Q1)	Discuss	how	Android	uses	processes	to	control	and	track	applications.	

	

Each	application	has	its	own	user	ID	and	will	run	in	the	context	of	a	separate	
process.	If	it	is	a	Java	application,	the	process	will	also	host	a	Delvik	virtual	
machine	as	the	Java	runtime	for	the	Android	application.	This	is	important	to	
ensure	that	Android	can	separate	control	the	use	of	system	resources	and	
services	for	each	application.	

	

It	is	possible	to	enable	multiple	applications	to	share	the	user	ID.	However	
whenever	this	happens,	these	applications	will	run	in	the	context	of	the	same	
process	and	cannot	be	individually	tracked	and	controlled	by	Android.	

	

(Q2)	Explain	how	to	use	WebView	to	display	an	image	retrievable	from	the	Web	
with	a	given	URL	(e.g.	
https://upload.wikimedia.org/wikipedia/commons/6/66/Android_robot.png).	

	

The	answer	may	follow	the	example	given	in	
http://www.tutorialspoint.com/android/android_webview_layout.htm.	

	

Particularly,	the	answer	should	include	three	key	parts:	

	



Part	1:	add	<WebView>	element	to	your	xml	layout	file.	

	

Part	2:	In	order	to	use	it,	you	have	to	get	a	reference	of	this	view	in	Java	file.	To	
get	a	reference,	create	an	object	of	the	class	WebView.	Its	syntax	is:	

WebView	browser	=	(WebView)	findViewById(R.id.webview);		

	

Part	3:	In	order	to	load	a	web	url	into	the	WebView,	you	need	to	call	a	method	
loadUrl(String	url)	of	the	WebView	class,	specifying	the	required	url.	Its	syntax	
is:	

browser.loadUrl("http://www.tutorialspoint.com");		

	

	

(Q3)	Discuss,	with	the	help	of	some	sample	code,	how	to	use	AsyncTask	to	
perform	a	task	on	a	Background	Thread.	

	

Students	must	make	it	clear	that	the	doInBackground()	method	is	to	be	used	to	
perform	a	task	in	the	background.	They	should	also	mention	that,	to	start	the	
execution	of	a	background	task,	we	have	to	create	a	task	instance	(object)	and	
call	its	execute()	method.	

	



	

	

(Q4)	A	single	video	source	transmits	30	frames	per	second,	each	containing	
2Mbits	of	data.	Suppose	that	the	average	communication	delay	between	the	
video	source	and	the	destination	is	10s.	In	practice,	the	shortest	possible	
communication	delay	can	be	7s	and	the	longest	possible	communication	delay	
can	be	15s.	What	would	be	the	minimum	size	for	the	delay	buffer	at	the	
destination	to	completely	eliminate	the	impact	of	jitter	on	continued	play	of	the	
video	content?	

	

We	have	to	consider	the	worst	case,	after	receiving	a	frame,	the	next	frame	can	
be	received	in	15-7=8s,	because	of	the	jitter.	

	

So	we	need	to	keep	8s	of	video	in	the	buffer.	That	means	the	size	of	the	buffer	
should	be	30*2Mbit*8=480Mbit=60MB	

	

(Q5)	Both	the	HTTP	and	the	FTP	protocols	can	be	used	to	transfer	files	in	the	
Internet.	Compare	the	two	protocols	by	showing	the	advantages	and	
disadvantages	of	using	each	for	file	transferring.	

	

Answer	to	this	question	is	not	unique.	Below	are	some	of	the	differences.	As	long	
as	students	can	identify	FOUR	correct	points,	we	can	consider	the	answer	to	be	
correct.	

	

1.	HTTP	is	used	to	view	websites	while	FTP	is	used	to	access	and	transfer	files.	
FTP's	file	transfer	purpose	is	more	or	less	for	website	maintenance	and	batch	
uploads,	while	HTTP	is	for	client-end	work	and	for	end	users	to	upload	things	
such	as	movies,	pictures	and	other	files	to	the	server.	

	

2.	HTTP	and	FTP	clients:	The	common	HTTP	client	is	the	browser	while	FTP	can	
be	accessed	via	the	command	line	or	a	graphical	client	of	its	own.	



	

3.	HTTP	Headers:	HTTP	Headers	contains	metadata	such	as	last	modified	date,	
character	encoding,	server	name	and	version	and	more	which	is	absent	in	FTP.	

	

4.	Age	Difference:	FTP	is	about	10	years	older	than	HTTP.	

	

5.	Data	Formats:	FTP	can	send	data	both	in	ASCII	and	Binary	Format	but	HTTP	
only	uses	Binary	Format.	

	

6.	Pipelining	in	HTTP:	HTTP	supports	pipelining.	It	means	that	a	client	can	ask	
for	the	next	transfer	already	before	the		previous	one	has	ended,	which	thus	
allows	multiple	documents	to	get	sent	without	a	round-trip	delay		between	the	
documents,	but	this	pipelining	is	missing	in	FTP.	

	

7.	Dynamic	Port	Numbers	in	HTTP:	One	of	the	biggest	hurdles	about	FTP	in	real	
life	is	its	use	of	two	connections.	It	uses	a	first	primary	connection	to	send	
control	commands	on,	and	when	it	sends	or	receives	data,	it	opens	a	second	TCP	
stream	for	that	purpose.	HTTP	uses	dynamic	port	numbers	and	can	go	in	either	
direction,	

	

8.	Persistent	Connection	in	HTTP:	For	HTTP	communication,	a	client	can	
maintain	a	single	connection	to	a	server	and	just	keep	using	that	for	any	amount	
of	transfers.	FTP	must	create	a	new	one	for	each	new	data	transfer.	Repeatedly	
making	new	connections	are	bad	for	performance	due	to	having	to	do	new	
handshakes/connections	all	the	time.	

	

9.	Compression	Algorithms	in	HTTP:	HTTP	provides	a	way	for	the	client	and	
server	to	negotiate	and	choose	among	several	compression	algorithms.	The	gzip	
algorithm	being	the	perhaps	most	compact	one	but	such	kind	of	sophisticated	
algorithms	are	not	present	in	FTP.	

	

10.	Support	for	Proxies	in	HTTP:	One	of	the	biggest	selling	points	for	HTTP	over	
FTP	is	its	support	for	proxies,	already	built-in	into	the	protocol.	

	

11.	One	area	in	which	FTP	stands	out	somewhat	is	that	it	is	a	protocol	that	is	
directly	on	file	level.	It	means	that	FTP	has	for	example	commands	for	listing	dir	
contents	of	the	remote	server,	while	HTTP	has	no	such	concept.	


