
13/09/17

1

Introduction to Socket
Programming

Agenda

• Basics of socket programming
–  Use of port numbers
–  Data structures for socket addressing

• TCP communication through socket
programming

• UDP communication through socket
programming

Socket Basics

• End point determined by two things:
–  Host address: IP address is Network Layer
–  Port number: is Transport Layer

• Two end-points determine a connection:
socket pair
–  e.g.: 206.62.226.35,p21 + 198.69.10.2,p1500

Page.4

Server IP Server Port number Client Port number Client IP

Quick question

•  If a Web browser is engaged in a TCP
communication with a Web server, what is
the pair of sockets that can be used to
represent their TCP connection?

–  Server IP address + 80
–  Client IP address + >= 1024

13/09/17

2

Ports
• Numbers (typical, since vary by OS):

–  0-1023 “reserved”
–  1024 - 5000 “ephemeral”
–  Above 5000 for general use

• Well-known, reserved services (see /etc/
services in Unix):
–  ftp 21/tcp
–  telnet 23/tcp
–  http 80/tcp
–  snmp 161/udp

Page.6

Transport Layer

• UDP: User Datagram Protocol
–  no acknowledgements
–  no retransmissions
–  out of order, duplicates possible
–  connectionless

• TCP: Transmission Control Protocol
–  reliable (in order, all arrive, no duplicates)
–  flow control
–  Connection-based

Page.7

Addresses and Sockets

• Structure to hold address information

• Functions pass address from user to OS
bind()

connect()

sendto()

• Functions pass address from OS to user
accept()

recvfrom()
Page.9

Socket Address Structure
struct in_addr {
 in_addr_t s_addr; /* 32-bit IPv4 addresses */
};

struct sockaddr_in {
 sa_family_t sin_family; /* AF_INET */
 in_port_t sin_port; /* TCP/UDP Port num */
 struct in_addr sin_addr; /* IPv4 address (above) */
}

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Page.10

13/09/17

3

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close() End-of-File
recv()

close()

“well-known”
port

Page.11

socket()
int socket(int family, int type, int protocol);
Create a socket, giving access to transport layer service.
•  family is one of

–  AF_INET (IPv4), AF_INET6 (IPv6), AF_LOCAL (local Unix),
–  AF_ROUTE (access to routing tables), AF_KEY (new, for

encryption)

•  type is one of
–  SOCK_STREAM (TCP), SOCK_DGRAM (UDP)
–  SOCK_RAW

•  protocol is 0 (used for some raw socket
options)

•  upon success returns socket descriptor
–  Integer, like file descriptor
–  Return -1 if failure

Page.12

bind()

•  sockfd is socket descriptor from socket()
• myaddr is a pointer to address struct with:

–  port number and IP address (INADDR_ANY)
–  If port is 0, then host will pick ephemeral port

•  addrlen is length of structure

•  returns 0 if ok, -1 on error
–  errono=EADDRINUSE (“Address already in use”)

int bind(int sockfd, const struct sockaddr *myaddr,
 socklen_t addrlen);

Assign a local protocol address (“name”) to a socket.

Page.13

listen()

•  sockfd is socket descriptor from socket()

•  backlog is maximum number of incomplete
connections
–  historically 5
–  rarely above 15 on an even moderate Web server!

int listen(int sockfd, int backlog);
 Change socket state for TCP server.

Page.14

13/09/17

4

accept()

•  sockfd is socket descriptor from socket()
•  cliaddr and addrlen return protocol address from

client

•  returns brand new descriptor, created by OS

int accept(int sockfd, struct sockaddr
 *cliaddr, socklen_t *addrlen);

 Return next completed connection.

Page.15

connect()

•  sockfd is socket descriptor from socket()
•  servaddr is a pointer to a structure with:

–  port number and IP address
–  must be specified (unlike bind())

•  addrlen is length of structure
•  client doesn’t need bind()

–  OS will pick ephemeral port
•  returns 0 if successful, -1 on error

int connect(int sockfd, const struct
sockaddr *servaddr, socklen_t addrlen);

 Connect to server.

Page.16

Question

• Function connect() can be used both for
TCP and UDP communication.

• TCP communication must use connect().
• Function connect() is optional for UDP

communication.
• What’s the benefits of using connect() for

UDP communication?

Page.17

close()

•  sockfd is socket descriptor from socket()
•  closes socket for reading/writing

–  returns -1 if error

• By default, close() is not blocking.
–  socket option SO_LINGER

+  block until data sent
+  or discard any remaining data

int close(int sockfd);
 Close socket for use.

Page.18

13/09/17

5

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close() End-of-File
recv()

close()

“well-known”
port

Page.19

Sending and Receiving

int recv(int sockfd, void *buff, size_t
mbytes, int flags);

int send(int sockfd, void *buff, size_t
mbytes, int flags);

•  Same as read() and write() but for flags
–  MSG_DONTWAIT
–  MSG_OOB
–  MSG_DONTROUTE

Page.20

UDP Client-Server

socket()

bind()

recvfrom()

Server

socket()

sendto()

recvfrom()

Client

(Block until receive datagram)

sendto()

Data (request)

Data (reply)
close()

“well-known”
port

- No “handshake”
-  No simultaneous close

Page.21

Sending and Receiving

int recvfrom(int sockfd, void *buff, size_t mbytes,
int flags, struct sockaddr *from, socklen_t
*addrlen);

int sendto(int sockfd, void *buff, size_t mbytes, int
flags, const struct sockaddr *to, socklen_t
addrlen);

• Same as recv() and send() but for addr
–  recvfrom fills in address of where packet

came from
–  sendto requires address of where sending

packet to

Page.22

13/09/17

6

Concurrent Servers

• Close sock in child

 Text segment

sock = socket()
/* setup socket */
while (1) {

 newsock = accept(sock)
 fork()
 if child
 read(newsock)
 until exit

}

 Parent
int sock;
int newsock;

 Child
int sock;
int newsock;

Page.28

