Connection Oriented Transport

¢ Process to process
* Sequenced, error free

¢ Flow and congestion
control

» Bit errors
* Losses

e Delay

e Reordering

¢ Fragmentation

TCP

* point-to-point:
° one sender;, one receiver ° bi-directional data flow in same
° no multicast connection

o full duplex data:

¢ connection-oriented:

e reliable, in-order byte steam:
° no “message boundaries”

= handshaking (exchange of control
msgs) init’s sender, receiver state
before data exchange

socket
door

Quick exercise

* TCP does not support virtual circuit,
why?
> A.TCP relies on IP and IP does not support
virtual circuit
> B.TCP maintains connection information at
two communicating end systems only

 C.Virtual circuit can only be established at the
network layer

> D. None of the above

The TCP Header

¢ Byte stream sent as sequence of segments
> Segment may be 0 to 64k bytes

Offsets Octet] 1 2 3
Octet Bit 01 2 3 4 5 6 789101112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
[}] Source port Destination port
4 32 Sequence number
8 64 Acknowledgment number (if ACK set)
Reseved y CE U/A PR S F
12 | 96 Data offset gWC /R C i8IS /Y T Window Size
RE G K H T NN
16 | 128 Checksum Urgent pointer (if URC set)

20 160 Options (if Data Offset > 5, padded at the end with "0" bytes if necessary)

17/09/17

TCP seq numbers and ACKs

Seq.#'s: -
iy
> byte stream
. User
° number of first byte in
N types
segment’s data ‘o
ACKs:
° seq # of next byte
expected from other
side
> cumulative ACK
host ACKs
receipt
of echoed
‘c

host ACKs

receipt of

‘C’, echoes
back ‘C’

time

PiggyBacking

* There is one important way to increase
efficiency.
> Assume that any connection is duplex,
o with data flowing evenly back and forth.

* Now, we don’t need to send a separate
acknowledgment, just attach to a
returning data segment.

Quick exercise

* Empty ACK segments consume
sequence number(s) and are not

acknowledged.

> A.no

> B.one

o C.two
o D.three

TCP Connection Establishment

TCP uses a three-way handshake to
open a connection:
I. ACTIVE OPEN: Client sends a segment with
+ SYN bit set
* port number of client and server
* initial sequence number (X) of client
2. PASSIVE OPEN: Server responds with a segment with
* SYN bit set
* initial sequence number (Y) of server
* ACK for ISN of client (X+1)
3. Client acknowledges by sending a segment with:

* ACK ISN of server (Y+1)

17/09/17

Establishing a Connection

¢ Normal connection

¢ A initiates and chooses
its initial sequence
number.

* B replies with its own R (eeay,
initial sequence number

and acknowledges host
| DATA (seq=x+1,

. =y+1)
* A begins data ad<\

transmission.

A (client) B (server)

CR (seg=x)

Duplicate Request

¢ A previous connection
request appears from
nowhere. GR (sea=x)

A (client) B (server)

* B replies with its own
L. ACK,CR (seq=:
initial sequence number W
and acknowledges host
.

e A rejects the
connection request.

REJECT (ack=y)

Duplicate Connection

» A previous connection

request appears from A (client) B (server)

u o

) PP CR (seq=x)
nowhere.

* B replies.

ACK,CR (seq=
e The first data packet of the W
previous connection also

DATA (seq=x+1
appears. ack=2)

A rejects the connection —

request.
REJECT (ack=y)

\

Quick exercise

* The connection establishment procedure
in TCP is susceptible to a serious security
problem called the attack.

> A.ACK flooding

° B.FIN flooding

> C.SYN flooding

> D.None of the above

17/09/17

17/09/17

TCP Connection Termination Quick exercise
* Each end of the data flow must be shut * Which process can be used to terminate
down independently (“half-close’’) a TCP connection?
« Four steps involved: ° A. three-way handshake
(1) A sends a FIN to B (active close) > B.four-way handshake
(2) B ACKs the FIN, o C. two-termination sequence
(at this time: B can still send data to A) > D.None of the above
(3) and B sends a FIN to A (passive close)
(4) A ACKs the FIN.

TCP Sequencing TCP Sequencing cont.

. A B . A B
e Retransmission due to e Cumulative
seq=92, 8 bytes data seq=92, 8 bytes data
lost acknowledgment. T acknowledgment
H = avoids ack=10
3 ack=100_+ . seq=100,20 bytesda@ |
g retransmission. 2 \
seq=92, 8 bytes data k=

ack=100

/
P o

—

TCP Sequencing cont.

 Delayed ACK causes A
retransmission seq=92, 8 bytes data

-

seq=100, 20 bytes data

timeout

}._

ack=120

Fast Retransmit

e Time-out period often
relatively long:
° long delay before
resending lost packet
* Detect lost segments via
duplicate ACKs.
o Sender often sends many
segments back-to-back
o If segment is lost, there
will likely be many
duplicate ACKs.

» |If sender receives 3 ACKs
for the same data, it
supposes that segment

after ACKed data was lost:

o fast retransmit: resend
segment before timer
expires

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y

}

a duplicate ACK for fast retransmit
already ACKed segment

17/09/17

