
NWEN 243
Networked Applications

Layer 4 – TCP and UDP

1

About the second lecturer
�  Aaron Chen
�  Office: AM405
�  Phone: 463 5114
�  Email: aaron.chen@ecs.vuw.ac.nz

�  Transport layer and application layer protocols

�  Building mobile applications and Web Services

�  Multimedia streaming and P2P (optional)

2

Transport layer protocols

�  Entire network seen as a pipe

3

Transport layer port numbers

� How can ensure it is delivered to the
right application on that machine?

� We need to be able to address the
applications on a machine, just like we had
to address the machines themselves.

� We use port numbers.

IP: 192.168.0.1
Port: 3000

Layer 4 – the Transport Layer.
�  The network layer performs machine to machine

delivery of datagrams
�  The transport layer performs application to

application delivery.
�  Ports are (16 bit) numbers (like house numbers)

that form the address space of a protocol.
◦  i.e. you can have tcp/53 and udp/53.

�  A socket is a software structure associated with a
port.

�  An application must ‘bind’ (associate) a socket to
a port before it can be used.

�  The Socket API is the interface for applications to
gain access to the network.

Socket API

� Client/server paradigm
� Two levels of service in the socket API:
◦ User Datagram Protocol (UDP)
�  Best effort protocol, transmits datagrams.

◦ Transmission Control Protocol (TCP)
�  reliable, byte stream-oriented, with capacity control,

transmits segments.

Simple Example

�  Client is assigned some
random unused port x by
its host.

�  The SMTP server runs
on well known port 25.

�  Reply is to destination
port x, with src port 25

Client Server
source port: x
dest. port: 25

source port:25
dest. port: x

port used: smtp

Delivery Without Guarantees

� Remember, IP Datagrams may be:
◦ Duplicated,
◦ Delivered out of order,
◦  Lost/Discarded
◦ Corrupted

� By the network layer.
� The TCP protocol will need to resolve

these, while the UDP protocol ignores
them.

Sender Receiver
No loss:

send pkt0

rcv pkt0
send ACK0

rcv ACK0
send pkt1

rcv pkt1
send ACK1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

rcv pkt0
send ACK0

rcv ACK0
send pkt1

Sender Receiver
Lost packet:

send pkt0

X (lost)
timeout
resend pkt1

rcv pkt1
send ACK1

rcv ACK1
send pkt0

rcv pkt0
send ACK0

Stop And Wait

9
reliable communication and flow control

Stop and Wait Performance

Transmit 10kb at
10Mbps = 1 msec.

Travel 600km in 3 msec

Round trip ≈ 14-30+ msec
Network performance <10%

10

Wellington

Auckland

Pipelining

Acknowldegement
arrives every 1 msec

Packet arrives every 1 msec

Network
performance ≈100%

11

Wellington

Auckland

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets.

�  Two generic forms of pipelined protocols: go-Back-N, selective
repeat

Pipelined Protocols

12

How do we manage all these inflight
packets?

�  We can use a software construct called a sliding window.
◦  We have a fixed size window (i.e. n packets)
�  This means we can have up to n packets on the ‘wire’.
�  When we successfully send a packet (i.e. its been ack’d by the

receiver), we can move the window on by 1.
�  We need buffering at sender and/or receiver

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 …

Ack’d Packets unAck’d Packets Forbidden sequence numbers

available seq numbers

13

Quick exercise

� When using the sliding-window protocol,
will the utilization be improved because of
the following?
◦ A. Reduce propagation delay
◦  B. Reduce sliding window size
◦ C. Increase sliding window size
◦ D. Reduce packet size

14

Protocol summary

� The important features of a sliding
window protocol are:
◦  Sequence number assignment
◦ The resend protocol
◦ Window management

� We’re going to look at GoBackN followed
by Selective repeat.

15

Go Back N

�  Very simple receiver, only accepts packets that arrive in-
order and discards others.

�  Send each packet in window in turn, window moves on when
first packet in window is acknowledged.

�  Timeout on first packet, then all UNACKNOWLEDGED packets
resent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

window (size = 8)

ACK’d
sent
not ACK’d available Not available

10 11 14

window (size = 8)

6

timer expires!!

7 8 9 7 8 9 6 6

16

9 8 7 6

Go Back N (Cumulative ACK)

�  Should a later packet be ACKed, consider all prior packets in
the window to also be ACKed, so in other words:
◦  ACK is cumulative, so an ACK for a later sequence number effectively

ACKs all preceding packets.

�  Lost ACK(6) and ACK(7)
�  Get ACK(8)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

window (size = 8)

ack’ed
sent
not ack’ed available Not available

10 11 6 7 8 14

window (size = 8)

15 16

ACK(8)

17

Go Back N in action

Sender Receiver

send pkt0
send pkt1

rcv pkt0
send ACK0
rcv pkt1
send ACK1

send pkt2 Lost!
send pkt3

rcv ACK0
send pkt4
rcv ACK1
send pkt5

rcv pkt3, discard

rcv pkt4, discard

rcv pkt5, discard pkt2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

rcv pkt2
send ACK2

18
Sender’s sliding window size is 4

Quick exercise

�  In a Go-Back-N protocol, if the window
size is 63, what is the minimum range of
sequence numbers?

◦ A. 0-62
◦  B. 0-63
◦ C. 0-64
◦ D. 1-63

19

An example

�  sequence number range is 0-2 and the
window size is 3.

20

A -> 0 -> B

A -> 1 -> B

A -> 2 -> B

(ACKs from B to A all lost)

A -> 0 -> B (retransmission)

A -> 1 -> B (retransmission)

B is expecting to receive
a new packet 0

Selective Repeat

�  Can send fewer packets at the cost of making the protocol
more complicated.

�  Packets are individually acknowledged.

�  Only one packet resent on timer expiry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

window (size = 8)

ack’ed
sent
not ack’ed available not

available

10 11 14

window (size = 8)

6

timer expires!!

7 8 6 6 12 15 16

21

Selective Repeat in Action

pkt0 sent
0 1 2 3 4 5 6 7 8 9

pkt1 sent
0 1 2 3 4 5 6 7 8 9

pkt2 sent
0 1 2 3 4 5 6 7 8 9

lost

pkt3 sent
0 1 2 3 4 5 6 7 8 9

ACK0 rcvd, pkt4 sent
0 1 2 3 4 5 6 7 8 9

pkt0 rcvd, ACK0 sent
0 1 2 3 4 5 6 7 8 9

pkt2 timeout, pkt2 sent
0 1 2 3 4 5 6 7 8 9

pkt1 rcvd, ACK1 sent
0 1 2 3 4 5 6 7 8 9

pkt3 rcvd, ACK3 sent
0 1 2 3 4 5 6 7 8 9

pkt4 rcvd, ACK4 sent
0 1 2 3 4 5 6 7 8 9
pkt5 rcvd, ACK5 sent
0 1 2 3 4 5 6 7 8 9

pkt2 rcvd, ACK2 sent
0 1 2 3 4 5 6 7 8 9

ACK1 rcvd, pkt5 sent
0 1 2 3 4 5 6 7 8 9

22

Sender Receiver

Quick exercise
�  In Selective Repeat, if 5 is the number of

bits for the sequence number, then the
maximum size of the sliding window must
be ____

◦ A. 15
◦  B. 16
◦ C. 31
◦ D. 1

23

An example

�  sequence number range is 0-3 and the
window size is 3.

24

A -> 0 -> B

A -> 1 -> B

A -> 2 -> B

(ACKs from B to A all lost)

A -> 0 -> B (retransmission)

A -> 1 -> B (retransmission)

B’s sliding window={3, 0, 1}

User datagram protocol

�  Connection-Less
◦  (no handshaking)

�  UDP packets (Datagrams)
◦  Each application interacts with UDP transport sw to produce

EXACTLY ONE UDP datagram!

This is why, improperly, we use the term UDP packets

25

UDP datagram format
8 bytes header + variable payload

26

�  UDP functions limited to:
◦  Error checking

�  which may even be disabled for performance
◦  addressing

�  which is the only strictly necessary role of a transport protocol

�  UDP length field
◦  all UDP datagram
◦  (header + payload)

�  payload sizes allowed:
◦  Empty (0)
◦  65527 bytes (65535-8)

IPv4 pseudo header

�  The pseudo header is only used for the checksum
computation

27

Quick exercise

�  Which of the following is not true about disabling
checksum?

◦  A. Checksum in UDP is not always necessary since IP packet
checksum includes packet payload.

◦  B. UDP checksum is often disabled to speed up implementation.

◦  C. Lack of UDP checksum is tolerable for communication in
LANs.

◦  D. Lack of UDP checksum is definitely dangerous in the Internet.

28

UDP: a lightweight protocol

�  No connection establishment
◦  no initial overhead due to handshaking

�  No connection state
◦  greater number of supported connections by a server!

�  Small packet header overhead
◦  8 bytes only vs 20 in TCP

�  originally intended for simple applications, oriented to short
information exchange
◦  DNS
◦  management (e.g. SNMP)
◦  Distributed file system support (e.g. NFS)
◦  etc

29

Unregulated send rate in UDP

� No rate limitations

� No re-transmission

�  Extremely important features for today
multimedia applications

�  Be careful: UDP ok for multimedia because it
does not provide anything at all (no features =
no limits!).

30

Quick exercise

� Which of the following about UDP is
correct?
◦ A. UDP supports a self-regulating "throttle"

feature that prevents network saturation
◦  B. UDP consumes fewer computer resources

by not maintaining connection state
◦ C. UDP guarantees that individual packets of a

transmission will arrive "in order”
◦ D. None of the above

31

Question to ponder

� Why would a TCP and UDP "phone call"
likely have equivalent performance
characteristics in practice?

32

RTP: sublayer of transport

33

Accompanying protocol: RTCP

Connection Oriented Transport

�  Process to process
�  Sequenced, error free
�  Flow and congestion

control

sending
process

receiving
process

data data

reliable

�  Bit errors
�  Losses
�  Delay
�  Reordering
�  Fragmentation

Reliable data
transfer protocol

(sending)

Reliable data
transfer protocol

(receiving)

data data

packet packet

unreliable

TCP

�  full duplex data:
◦  bi-directional data flow in same

connection
�  connection-oriented:
◦  handshaking (exchange of control

msgs) init’s sender, receiver state
before data exchange

�  point-to-point:
◦  one sender, one receiver
◦  no multicast

�  reliable, in-order byte steam:
◦  no “message boundaries”

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

A B

Quick exercise

� TCP does not support virtual circuit,
why?
◦ A. TCP relies on IP and IP does not support

virtual circuit
◦  B. TCP maintains connection information at

two communicating end systems only
◦ C. Virtual circuit can only be established at the

network layer
◦ D. None of the above

39

The TCP Header

�  Byte stream sent as sequence of segments
◦  Segment may be 0 to 64k bytes

41

TCP seq numbers and ACKs

Seq. #’s:
◦  byte stream
◦  number of first byte in

segment’s data

ACKs:
◦  seq # of next byte

expected from other
side

◦  cumulative ACK

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=43, ACK=80, data= ‘D’

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

Seq=79, ACK=43, data = ‘C’

time

host ACKs
receipt of
‘C’, echoes

back ‘C’

42

PiggyBacking

� There is one important way to increase
efficiency.
◦ Assume that any connection is duplex,
◦ with data flowing evenly back and forth.

� Now, we don’t need to send a separate
acknowledgment, just attach to a
returning data segment.

43

Quick exercise

� Empty ACK segments consume _____
sequence number(s) and are not
acknowledged.

◦ A. no
◦  B. one
◦ C. two
◦ D. three

44
44

TCP Connection Establishment

TCP uses a three-way handshake to
open a connection:

1.  ACTIVE OPEN: Client sends a segment with

�  SYN bit set
�  port number of client and server
�  initial sequence number (X) of client

2.  PASSIVE OPEN: Server responds with a segment with

�  SYN bit set
�  initial sequence number (Y) of server
� ACK for ISN of client (X+1)

3.  Client acknowledges by sending a segment with:

�  ACK ISN of server (Y+1)

45

Establishing a Connection

�  Normal connection
�  A initiates and chooses

its initial sequence
number.

�  B replies with its own
initial sequence number
and acknowledges host
1.

�  A begins data
transmission.

 A (client) B (server)

CR (seq=x)

ACK,CR (seq=y,
ack=x+1)

 DATA (seq=x+1,
 ack=y+1)

46

Duplicate Request

�  A previous connection
request appears from
nowhere.

�  B replies with its own
initial sequence number
and acknowledges host
1.

�  A rejects the
connection request.

A (client) B (server)

CR (seq=x)

ACK,CR (seq=y,
ack=x+1)

REJECT (ack=y)

47

Duplicate Connection

�  A previous connection
request appears from
nowhere.

�  B replies.
�  The first data packet of the

previous connection also
appears.

�  A rejects the connection
request.

A (client) B (server)
CR (seq=x)

ACK,CR (seq=y,
ack=x+1)

REJECT (ack=y)

DATA (seq=x+1
ack=z)

48

Quick exercise

� The connection establishment procedure
in TCP is susceptible to a serious security
problem called the _________ attack.

◦ A. ACK flooding
◦  B. FIN flooding
◦ C. SYN flooding
◦ D. None of the above

49

TCP Connection Termination

� Each end of the data flow must be shut
down independently (“half-close”)

�  Four steps involved:
 (1) A sends a FIN to B (active close)
 (2) B ACKs the FIN,
 (at this time: B can still send data to A)

 (3) and B sends a FIN to A (passive close)
 (4) A ACKs the FIN.

51

Quick exercise

� Which process can be used to terminate
a TCP connection?

◦ A. three-way handshake
◦  B. four-way handshake
◦ C. two-termination sequence
◦ D. None of the above

52

TCP Sequencing

seq=92, 8 bytes data

ack=100

seq=92, 8 bytes data

ack=100

tim
eo

ut

A B
�  Retransmission due to

lost acknowledgment.

53

TCP Sequencing cont.

seq=92, 8 bytes data

A B
�  Cumulative

acknowledgment
avoids
retransmission. seq=100, 20 bytes data

ack=120

tim
eo

ut

54

ack=100

TCP Sequencing cont.

seq=92, 8 bytes data

seq=92, 8 bytes data

ack=100 tim
eo

ut

A B �  Delayed ACK causes
retransmission

seq=100, 20 bytes data

ack=120
ack=120

55

Fast Retransmit

�  Time-out period often
relatively long:
◦  long delay before

resending lost packet
�  Detect lost segments via

duplicate ACKs.
◦  Sender often sends many

segments back-to-back
◦  If segment is lost, there

will likely be many
duplicate ACKs.

�  If sender receives 3 ACKs
for the same data, it
supposes that segment
after ACKed data was lost:

◦  fast retransmit: resend
segment before timer
expires

56

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

57

TCP ACK Generation @ Receiver

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

immediately send duplicate ACK, indicating
seq. # of next expected byte

immediate ACK if segment starts
at lower end of gap

59

