Relational Algebra

SWEN304/SWEN435

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Basic relational algebra operations
- Set theoretic operations
- Additional operations
- *Reading: Chapters 6 of the textbook*

Query Processing in DBMS

- Users/applications submit queries to the DBMS
- The DBMS processes queries before evaluating them
 - Recall: DBMS mainly use declarative query languages (such as SQL)
 - Queries can often be evaluated in different ways
 - SQL queries do not determine how to evaluate them

Query Processing in DBMS^[4,5]

Query Processing in DBMS

- The parser checks the syntax, e.g., verifies table names, data types
 - A scanner tokenizes the query (tokens for SQL commands, names, ...)
 - Either the query is executable or an error message is generated
 - (SQLCODE/SQLSTATE)

Query Processing in DBMS

- The translator translates the query into relational algebra
 - Internal exchange format between DBMS components
 - Allows for symbolic calculation

Victoria

Te Whare Wänanga 1 te Üpoko o te Ika a Mäu Tombo

Victoria Query Processing in DBMS

- Relational Algebra was introduced by Codd (1970) with the relational data model
 - Provides formal foundations for relational model operations
 - Used as basis for implementing and optimizing queries in RDBMSs
 - Some of the concepts are incorporated into the SQL standard query language

Te Whare Wānanga te Üpoko o te Ika a Mār Tomas

Relational Algebra

- A set of operations to manipulate (query and update) a relational database
 - Operations are applied onto relations
 - The result is a new relation
- Basic operations:
 - project , select, rename, and join
- Set theoretic operations:
 - union, intersect, set difference,
 - Cartesian product
- Additional relational operations:
 - aggregate operations (SUM, COUNT, AVERAGE), grouping, and
 - outer join

A Sample Relational Database

Student

Victoria UNIVERSITY OF WELLINGTON TE Whare Winanga o te Üpoko o te Ika a Mäui

Lname	Fname	StudId	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Grades

StudId	Courld	Grad
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	В-
555555	C201	С
131313	C302	ω
007007	C201	A
010101	C201	ω

Course

Cname	Courld	Points	Dept
DB Systems	C302	15	Comp
Software Engineering	C301	15	Comp
Discrete Math	M214	22	Math
Programmes	C201	22	Comp

• Notation: $\pi_{AL}(N)$

where AL is a subset of attributes from R in N(R, C).

Note: for simplicity we also use N to refer to relation r over N

- Project operation produces a new relation by retaining columns in AL and dropping all the others
- If $AL = (A_l, ..., A_k)$, then $\pi_{AL}(N) = N[A_l, ..., A_k]$
- Example: StudentName = $\pi_{\text{LName, FName}}$ (Student):

StudentName

LName	FName
Smith	Susan
Bond	James
Cecil	John

Select Operation

- It is used to select such a subset of tuples from a relation that satisfies a given condition
- Notation: $\sigma_c(N)$
 - Condition *c* is a Boolean expression on attributes of *R* in *N*(*R*, *C*)
 - Boolean expression is made up of clauses of the form $A \ \theta \ a$ or $A \ \theta \ B$, where
 - $a \in dom(A)$,
 - $\theta \in \{ =, <, >, \le, \ge, \neq \}$, and
 - $A, B \in \mathbb{R}$
 - Clauses can be connected by Boolean operators \neg , \land , \lor to form new clauses

Select Operation: Examples

• Student2 =
$$\sigma_{\text{StudId} = 007007}$$
(Student)

Student2

LName

Bond

Major

Math

Lname	Fname	Studld	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

FName

James

Student3 = $\sigma_{\text{FName}='\text{Susan'}}$ (Student)

Student3

LName	FName	StudId	Major
Smith	Susan	131313	Comp
Smith	Susan	555555	Comp

StudId

007007

Numeric Properties of Select and Project

- Since we want to use relational algebra expressions in query optimization, we need numeric properties of relational algebra operations
- Relation $\pi_{AL}(N)$ is produced from relation N by retaining columns in AL and dropping duplicate tuples, hence:
 - $degree(\pi_{AL}(N)) = |AL| \le |R|$ (number of attributes)
 - $|\pi_{AL}(N)| \le |N|$ (number of tuples)
- Relation $\sigma_C(N)$ contains those tuples of r(N) that evaluate true for C, hence:
 - $degree(\sigma_C(N)) = degree(N)$ (number of attributes)
 - $\sigma_C(N) \subseteq N$ and $|\sigma_C(N)| \leq |N|$ (number of tuples)

Combining Select and Project Operators

• $\pi_{AL}(\sigma_C(N))$ $\sigma_{C}(\pi_{AL}(N))$ or For example,

Student4 = $\pi_{\text{FName, LName}} (\sigma_{\text{StudId} = 007007} (\text{Student}))$ In SQL: SELECT FName, LName FROM Student WHERE StudentId = 007007;

Student			
Lname	Fname	Studld	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Student4

FName	LName
James	Bond

Rename Operation

- Notation: $\rho_{A1 \rightarrow B1,...,Ak \rightarrow Bk}(N)$ with $dom(B_i) = dom(A_i)$ for i = 1, ..., k
- A unary operation defined on relations r(N) with A₁, . .
 .,A_k ∈ R
- schema: $(R \{A_1, \ldots, A_k\}) \cup \{B_1, \ldots, B_k\}$
- Example: $\rho_{\text{FName} \rightarrow \text{FirstName}, \text{LName} \rightarrow \text{LastName}}(\text{Student4})$
- In SQL:

SELECT FName As FirstName, LName As LastName FROM Student4;

Student

Lname	Fname	Studld	Major
Smith	Susan	131313	Comp
Bond	James	007007	Math
Smith	Susan	555555	Comp
Cecil	John	010101	Math

Student5

FirstName	LastName
James	Bond

Join Operation

- Join operation merges those tuples from two relations that satisfy a given condition
 - The condition is defined on attributes belonging to both of the relations to be joined
- Theta, equi, and natural join operations
- Theta, equi, and natural join are collectively called INNER joins
- In each of inner joins, tuples with null valued join attributes do not appear in the result
- OUTER joins include tuples with null valued join attributes into the result

Theta Join Operation

- Notation: $N = N_1 \bowtie_{JC} N_2$
 - *N* is the result of joining relation N_1 over $N_1(R_1, C_1)$ with relation N_2 over $N_2(R_2, C_2)$
 - Join condition $JC = jc_1 \wedge \ldots \wedge jc_n$
 - $jc_i = A \theta B, A \in R_1, B \in R_2$,

$$\theta \in \{=, \neq, <, >, \leq, \geq\},\$$

- $Dom(N_1, A) \subseteq Dom(N_2, B),$
- $Range(N_1, A) \subseteq Range(N_2, B)$
- $R_1 = \{A_1, \dots, A_m\}, R_2 = \{B_1, \dots, B_n\},$ $R = \{A_1, \dots, A_m, B_1, \dots, B_n\}$
- $degree(R) = degree(R_1) + degree(R_2)$
- $\bullet \quad \mid N \mid \, \leq \, \mid N_1 \mid \, \times \, \mid N_2 \mid$

Equijoin Operation

- A special case of the theta join, when $\theta \in \{=\}$
 - Notation: $N = N_1 \bowtie_{JC} N_2$

where $JC = jc_1 \wedge \ldots \wedge jc_n$

 $jc_i \equiv A \equiv B, A \in R_1, B \in R_2,$

For example,

Student				
Lname	Fname	StudId	Major	
Smith	Susan	131313	Comp	
Bond	James	007007	Math	
Smith	Susan	555555	Comp	
Cecil	John	010101	Math	

Grades		
StudId	Courld	Grad
007007	C302	A+
555555	C302	ω
007007	C301	А
007007	M214	A+
131313	C201	B-
555555	C201	С
131313	C302	ω
007007	C201	А
010101	C201	ω

Student M StudId = StudId Grades

In SQL:

SELECT * FROM Student s, Grades g WHERE s.StudId = g.StudId;

Student_Grades

Lname	Fname	StudId	StudId	Major	Courld	Grade
Smith	Susan	131313	131313	Comp	C201	В-
Smith	Susan	131313	131313	Comp	C302	ω
Bond	James	007007	007007	Math	C302	A+
Bond	James	007007	007007	Math	C301	А
Bond	James	007007	007007	Math	M214	A+
Bond	James	007007	007007	Math	C201	А
Smith	Susan	555555	555555	Comp	C201	С
Smith	Susan	555555	555555	Comp	C302	ω
Cecil	John	010101	010101	Math	C201	ω

Natural Join Operation

- A special case of an equijoin operation, when join attributes have the same name $(N_1 \cdot X = N_2 \cdot X)$
 - Notation: $N = N_1 * N_2$
 - Formal definition:

 $N_1 * N_2 = \{ t [R_1 \cup R_2] | t [R_1] \in N_1 \land t [R_2] \in N_2 \}$

- $degree(r) = degree(r_1) + degree(r_2) |X|$ (number of attributes)
- $0 \le |N_1 * N_2| \le |N_1| \cdot |N_1|$ (number of tuples)
- }

where $|N_i|$ denotes the number of elements in a relation N_i

Natural Join Operation: Example

- Query: Retrieve information of students and their grades
- Relational Algebra:

Student * Grades

In SQL:
 SELECT * FROM Student NATURAL JOIN Grades;

Natural Operation: Example

Lname	Fname	StudId	Major	Courld	Grade
Smith	Susan	131313	Comp	C201	В-
Smith	Susan	131313	Comp	C302	ω
Bond	James	007007	Math	C302	A+
Bond	James	007007	Math	C301	А
Bond	James	007007	Math	M214	A+
Bond	James	007007	Math	C201	A
Smith	Susan	555555	Comp	C201	С
Smith	Susan	555555	Comp	C302	ω
Cecil	John	010101	Math	C201	ω

Student * Grades

Set Theoretic Operations

Union, Intersect, Difference, Cartesian product

 $N = N_1 \Theta N_2$

where $R_1 = (A_1, ..., A_n)$, $R_2 = (B_1, ..., B_m)$ are lists of attributes, and

$$\Theta \! \in \! \{ \cup, \cap, \text{-}, \times \}$$

• i.e.

- $N = N_1 \cup N_2$
- $N = N_1 \cap N_2$
- $N = N_1 \times N_2$
- $N = N_1 N_2$

Set Theoretic Operations

- For union, intersect and difference, attribute sets R₁ and R₂ have to be union compatible:
 - $|R_1| = |R_2|,$
 - $(\forall i \in \{1, ..., n\})(Dom(N_1, A_i) = Dom(N_2, B_i))$, and
 - $(\forall i \in \{1, ..., n\})(Range(N_1, A_i) = Range(N_2, B_i))$
- For cartesian product

 $R=R_1\cup R_{2\prime}$

 $degree(N_1 \times N_2) = degree(r(N_1)) + degree(N_2),$ $|N_1 \times N_2| = |N_1| \cdot |N_2|$

• Consider the following relations

- How many tuples will the Cartesian product $N_1 \times N_2$ return?
 - a) 6
 - b) 9

Consider the following relations

- How many tuples will the natural join $N_1 * N_2$ return?
 - a) 2
 - b) 6
 - c) 9

- Introduced to include those tuples that don't match, or contain null values for join attributes into join relation
- Notations:

• Example:

Relational Algebra & SQL

- Each relational algebra query (except union) can be easily rewritten in SQL (for simplicity: assume global attribute names)
 - attribute selection $\sigma_{A=B}(N)$: SELECT * FROM N WHERE A = B;
 - constant selection $\sigma_{A=c}(N)$: SELECT * FROM N WHERE A = C;
 - projection $\pi_{A1,...,Ak}(N)$: SELECT DISTINCT A_1, \ldots, A_k FROM N;

Relational Algebra & SQL

- rename $\rho_{A_1 \to B_1, \dots, A_k \to B_k}(N)$: SELECT A_1 AS B_1 , ..., A_k AS B_k FROM N;
- natural join N₁ * N₂ (with common attributes A₁, . . . ,A_k):

SELECT * FROM N_1 NATURAL JOIN N_2 ;

- equijoin $N_1 \bowtie_{A_1=B_1,\ldots,A_k=B_k} N_2$: SELECT * FROM N_1 , N_2 WHERE $N_1.A_1 = N_2.B_1$ AND . . . AND $N_1.A_k = N_2.B_k$;
- difference $N_1 N_2$:

SELECT * FROM N_1 EXCEPT SELECT * FROM N_2 ;

Relational Algebra and SQL: Examples

- Project operation:
 - π_{LName, FName} (Student)
 - SELECT DISTINCT LName, FName FROM Student;
- Selection operation:
 - σ_{FName = 'Susan'} (Student)
 - SELECT * FROM Student WHERE FName = 'Susan';

Summary

- Relational Algebra consists of several groups of operations
 - Unary Relational Operations
 - SELECT (symbol: σ (sigma))
 - PROJECT (symbol: π (pi))
 - RENAME (symbol: ρ (rho))
 - Binary Relational Operations
 - JOIN (several variations of JOIN exist)
 - Relational Algebra Operations From Set Theory
 - UNION (\cup), INTERSECTION (\cap), DIFFERENCE (or MINUS,)
 - CARTESIAN PRODUCT (x)
 - Additional Relational Operations
 - OUTER JOINS,
 - AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)

- 1. Elmasri, Navathe. Fundamentals of database systems. Pearson, 2010
- 2. Ramakrishnan, Gehrke. Database Management Systems. McGraw-Hill, 2003
- 3. Silberschatz, Korth, Sudarshan. Database Systems Concepts. McGraw-Hill, 2002
- Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995
- 5. Connolly, Begg. Database Systems A Practical Approach to Design, Implementation, and Management. Addison Wesley, 2002

- Query Optimization
 - Heuristic optimization
 - Cost-based optimization
- Readings
 - Chapter 19: Algorithms for Query Processing and Optimization
 - Chapters 17: Disk Storage, Basic File Structures, and Hashing (Sections: 13.2, to 13.8)
 - Chapter 18: Indexing Structures for Files
 (Sections: 14.1 to 14.5)
 - File Organization COMP261