
Lecturer: Dr Hui Ma

Engineering and Computer Science

Query Optimization
Heuristic Optimization

SWEN304/SWEN435

SWEN 304 Lect12: Heuristic Query Optimization 1

Outline

▪ Query Processing in DBMS
▪ Query optimization techniques
▪ Heuristic query optimization

▪ Translating SQL into relational algebra

▪ Reordering query operations

▪ Transformation rules for relational algebra operations

▪ Readings from the textbook:

▪ Chapter 19: Algorithms for Query Processing and

Optimization

SWEN 304 Lect12: Heuristic Query Optimization 2

Query Processing in DBMS

▪ Users/applications submit queries to the DBMS

▪ The DBMS processes queries before evaluating them

▪ Recall: DBMS mainly use declarative query languages (such

as SQL)

▪ Queries can often be evaluated in different ways

▪ SQL queries do not determine how to evaluate them

SWEN 304 Lect12: Heuristic Query Optimization 3

Query Processing in DBMS

SWEN 304 Lect12: Heuristic Query Optimization 4

Query Optimisation

▪ Query preparation:

▪ Decompose query into query blocks containing

▪ Exactly one SELECT and FROM clause

▪ At most one WHERE, GROUP BY and HAVING clause

▪ Nested queries within a query are identified as separate
query blocks

▪ Aggregate operators in SQL must be included in the extended

algebra

SWEN 304 Lect12: Heuristic Query Optimization 5

Student({Lname, Fname, StudId, Major}, {StudId})

Grades({StudId, CrsId, Grade}, {StudId, CrsId})

Course({Cname, CrsId, Points, Dept}, {CrsId})

▪ SQL query:

SELECT StudId, Lname

FROM Student s, Grades g, Course c

WHERE s.StudId=g.StudId AND g.CrsId= c.CrsId

AND Grade = ‘A+’ AND Dept = ‘Comp’ AND Major = ‘Math’;

• Relational Algebra:

pStudId, LName (σ s.StudId=g.StudId ˄ g.CrsId=c.CrsId ˄ Grade=‘A+’ ˄ Major = ‘Math’

˄ Dept = ‘Comp’ (Course × (Student × Grades)))

Heuristic Query Optimization: An Example

SWEN 304 Lect12: Heuristic Query Optimization 6

Query Tree

▪ Query tree: A tree data structure that corresponds to a
relational algebra expression

▪ It represents the input relations of the query as leaf
nodes of the tree, and

▪ Represents the relational algebra operations as internal
nodes

▪ The initial query tree for the example SQL query:

▪ Lower level nodes, starting from leaves, contain Cartesian
product operators

▪ These are applied onto relations from the SQL FROM
clause

▪ After that are (relational) select and join conditions from
SQL WHERE clause to upper tree nodes applied

▪ Finally is project operator of the SELECT clause attribute
list to tree root applied

SWEN 304 Lect12: Heuristic Query Optimization 7

Query Tree Example

• Relational Algebra:

pStudId, LName (σ s.StudId=g.StudId ˄ g.CrsId=c.CrsId ˄ Grade=‘A+’ ˄ Major= ‘Math’ ˄

Dept = ‘Comp’ (Course × (Student × Grades)))

SWEN 304 Lect12: Heuristic Query Optimization 8

Query Tree Exercise

• Please draw query trees for the following relational algebra

expressions

pStudId (σGrade=‘A+’ (Grades))

SWEN 304 Lect12: Heuristic Query Optimization 9

Query Tree Exercise

• Please draw query trees for the following relational algebra

expressions

pStudId, LName (σGrade=‘A+’ (Student * Grades))

SWEN 304 Lect12: Heuristic Query Optimization 10

Query Tree Exercise

• Please draw query trees for the following relational algebra

expressions

(pStudId,(σ CrsId = ‘M214’ (Grades))) - (pStudId,(σ CrsId = ‘C201’ (Grades)))

SWEN 304 Lect12: Heuristic Query Optimization 11

Query Execution Plan

▪ For each query tree, computation proceeds bottom-up:

▪ Child nodes must be executed before their parent nodes

▪ But there can exist multiple methods of executing sibling
nodes, e.g.

▪ Process sequentially

▪ Process in parallel

▪ A query execution plan consists of a query tree with
additional annotation at each node indicating the
implementation method for each RA operator

▪ The query optimizer determines which query execution
plan is optimal, using a variety of algorithms

▪ Realistically, we cannot expect to always find the best
plan but we expect to consistently find a plan that is
good (near-optimal)

SWEN 304 Lect12: Heuristic Query Optimization 12

Query Optimisation
▪ Query optimizer rewrites the naïve (canonical) query plan

into a more efficient evaluation plan

▪ Choosing a suitable query execution plan is called Query

Optimization and it mainly means making decisions

▪ On the order of the execution of basic relational algebra

operations and

▪ On data access methods

SWEN 304 Lect12: Heuristic Query Optimization 13

Query Optimization Techniques

▪ Two main query optimization techniques

▪ One relies on the heuristic reordering of the relational

algebra operations,

▪ The other involves systematic estimating the cost of

different execution plans, and choosing one with the lowest

cost

▪ Heuristics vs. cost-based optimization

▪ General heuristics allow to improve performance of most

queries

▪ Costs estimated from statistics allow for a good optimization
of each specific query

▪ Most DBMS use a hybrid approach between heuristics and

cost estimations

SWEN 304 Lect12: Heuristic Query Optimization 14

Query Optimization Techniques

▪ Enumerating potential query plans:

SWEN 304 Lect12: Heuristic Query Optimization 15

Heuristic Query Optimization

▪ Process for heuristics optimization

1. The parser of a high-level query generates an initial
internal representation

2. Apply heuristics rules to optimize the internal
representation

3. A query execution plan is generated to execute
groups of operations based on the access paths
available on the files involved in the query

▪ The main heuristic is to apply first the operations that
reduce the size of intermediate results

▪ E.g., Apply SELECT and PROJECT operations before
applying the JOIN or other binary operations

SWEN 304 Lect12: Heuristic Query Optimization 16

Using Heuristics in Query Optimization (1)

▪ General Transformation Rules for Relational Algebra
Operations:

1. Cascade of s: A conjunctive selection condition can be
broken up into a cascade (sequence) of individual s
operations:
▪ s c1 ʌ c2 ʌ ... ʌ cn(N) = sc1 (sc2 (...(scn(N))...))

sgrade=‘A+’ ʌ courId=‘C302’ (Grades)=sgrade=‘A+’(scourId=‘C302’ (Grades))

2. Commutativity of s: The s operation is commutative:
▪ sc1 (sc2(N)) = sc2 (sc1(N))

sgrade=‘A+’(scourId=‘C302’ (Grades)) =scourId=‘C302’ (sgrade=‘A+’ (Grades))

SWEN 304 Lect12: Heuristic Query Optimization 17

Using Heuristics in Query Optimization (1)

▪ General Transformation Rules for Relational Algebra
Operations:

3. Cascade of p: In a cascade (sequence) of p operations,
all but the last one can be ignored:
▪ pList1 (pList2 (...(pListn(N))...)) = pList1(N)

pStudId (pStudId, LName(Student)) = pStudId(Student)

SWEN 304 Lect12: Heuristic Query Optimization 18

Using Heuristics in Query Optimization (1)

▪ General Transformation Rules for Relational Algebra
Operations:

4. Commuting s with p: If the selection condition c involves
only the attributes A1, ..., An in the projection list, the
two operations can be commuted:
▪ pA1, A2, ..., An (sc (N)) = sc (pA1, A2, ..., An (N))

pStudId, major (smajor=‘’Comp’(Student))
= smajor=‘’Comp’(pStudId, major(Student))

pStudId, Fname(smajor=‘’Comp’(Student))
=smajor=‘’Comp’(pStudId, Fname(Student))

SWEN 304 Lect12: Heuristic Query Optimization 19

Using Heuristics in Query Optimization (2)

▪ General Transformation Rules for Relational Algebra
Operations (contd.) (represent both natural join * and equi-
join C):

5. Commutativity of (and x): The operation is commutative
as is the x operation:

▪ N1 C N2 = N2 CN1; N1 x N2 = N2 x N1

Student StudId-StudId Grades = Grades StudId-StudId Student

Student x Grades = Grades x Student

SWEN 304 Lect12: Heuristic Query Optimization 20

Using Heuristics in Query Optimization (2)

6. Commuting s with (or x): If all the attributes in the selection
condition c involve only the attributes of one of the relations
being joined—say, N1—the two operations can be commuted
as follows:

▪ sc (N1 N2) = sc (N1) N2

smajor=‘Math’ (Student * Grades) = smajor=‘Math’ (Student) * Grades

▪ Alternatively, if the selection condition c can be written as (c1
and c2), where condition c1 involves only the attributes of N1
and condition c2 involves only the attributes of N2, the
operations commute as follows:

▪ sc(N1 N2) = sc1(N1) sc2 (N2)

smajor=‘Math’ ʌ grade=‘A+’ (Student * Grades)

= smajor=‘Math’ (Student) * sgrade=‘A+’ (Grades)

SWEN 304 Lect12: Heuristic Query Optimization 21

Using Heuristics in Query Optimization (3)

▪ General Transformation Rules for Relational Algebra
Operations (contd.):

7. Commuting p with (or x): Suppose that the projection list
is AL = {A1, ..., An, B1, ..., Bm}, where A1, ..., An are attributes
of N1 and B1, ..., Bm are attributes of N2.

▪ If the join condition c involves only attributes in AL, the two
operations can be commuted as follows:

▪ pAL (N1 C N2) = (pA1, ..., An (N1)) C(p B1, ..., Bm (N2))

SWEN 304 Lect12: Heuristic Query Optimization 22

Using Heuristics in Query Optimization (3)

▪ If the join condition C contains additional attributes not in
AL, these must be added to the projection list, and a final p
operation is needed.

▪ pAL(N1 CN2) = pAL(pAL1(N1) CpAL2(N2)),

where ALi contains the common attributes in Ni and AL and
the common attributes of N1 and N2

SWEN 304 Lect12: Heuristic Query Optimization 23

Using Heuristics in Query Optimization (4)

▪

▪

SWEN 304 Lect12: Heuristic Query Optimization 24

Using Heuristics in Query Optimization (5)

SWEN 304 Lect12: Heuristic Query Optimization 25

Using Heuristics in Query Optimization (6)

▪ Summary of Heuristics for Algebraic Optimization:

1. The main heuristic is to apply first the operations
that reduce the size of intermediate results.

2. Perform select operations as early as possible to
reduce the number of tuples and perform project
operations as early as possible to reduce the number
of attributes. (This is done by moving select and
project operations as far down the tree as possible,
e.g. rule 6, 7, 10, 11)

3. The select and join operations that are most
restrictive should be executed before other similar
operations. (This is done by reordering the leaf
nodes of the tree among themselves and adjusting
the rest of the tree appropriately.)

SWEN304 Lect11_Relational Algebra 26

A Sample Relational Database

Student

Lname Fname StudId Major

Smith Susan 131313 Comp

Bond James 007007 Math

Smith Susan 555555 Comp

Cecil John 010101 Math

Course

Cname CourId Points Dept

DB Systems C302 15 Comp

Software Engineering C301 15 Comp

Discrete Math M214 22 Math

Programmes C201 22 Comp

Grades

StudId CourId Grad

007007 C302 A+

555555 C302 ω

007007 C301 A

007007 M214 A+

131313 C201 B-

555555 C201 C

131313 C302 ω

007007 C201 A

010101 C201 ω

SWEN 304 Lect12: Heuristic Query Optimization 27

An Example Initial Query Tree:

pStudId, LName (σGrade=‘A+’ ˄ Major = ‘Math’ ˄ Dept = ‘Comp’ ˄ s.StudId=g.StudId ˄

g.CrsId=c.CrsId (Course × (Student × Grades)))

▪ Relational algebra query

▪ Query tree

SWEN 304 Lect12: Heuristic Query Optimization 28

Analysis of the Initial Query Tree

▪ According to the structure of the initial query
tree, two Cartesian products should be executed

first

▪ The main heuristic: Apply SELECT and PROJECT
operations before applying the JOIN or other

binary operations

▪ Hence, move select operations down the tree

SWEN 304 Lect12: Heuristic Query Optimization 29

Query Tree After Moving Down Selects

▪ Move select operations down the tree (Rule 6)

SWEN 304 Lect12: Heuristic Query Optimization 30

Query Tree After Introducing Joins
▪ Replacing each Cartesian product followed by a select according

to a join condition with a join operator (Rule 12)

SWEN 304 Lect12: Heuristic Query Optimization 31

Query Tree After Switching Join Nodes
▪ Assume there are less Comp courses than Math major students

▪ switching Course and Student so that the very restrictive select

operation could be applied as early as possible (Rule 9)

SWEN 304 Lect12: Heuristic Query Optimization 32

Query Tree after Pushing down Project
▪ keeping in intermediate relations only the attributes needed by

subsequent operations by applying project (p) operations as early as

possible (Rule 7)

SWEN 304 Lect12: Heuristic Query Optimization 33

Effect of Project Operations

▪ Performing project operations as early as
possible brings an improvement in the efficiency

of a query execution

▪ tuples get shorter after projection, more of them
will fit into a file block of the same size

▪ the same number of tuples will be contained in a
smaller number of blocks

▪ As there will be less blocks to be processed by
subsequent operations, the query execution will
be faster

SWEN 304 Lect12: Heuristic Query Optimization 34

Query Optimisation

▪ All transformations can be applied to the canonical

evaluation plan

▪ However, there is no best operator sequence that is

always optimal

▪ Efficiency depends on the current data instance, the
actual implementation of base operations, access paths

and indexes, etc.

▪ Idea: assign average costs to operators (nodes) and

aggregate costs for each query plan

SWEN 304 Lect12: Heuristic Query Optimization 35

Summary

▪ Heuristic optimization converts a declarative
query to a canonical algebraic query tree that is

then gradually transformed using transformation
rules

▪ The main heuristics is to perform unary
relational operations (selection and projection)

before binary operations (joins, set theoretic),
and aggregate functions with (or without)

grouping

SWEN 304 Lect12: Heuristic Query Optimization 36

Next

▪ Cost-based query optimization

▪ Readings:

▪ Chapter 19: Algorithms for Query Processing and

Optimization

▪ Chapters 17: Disk Storage, Basic File Structures, and

Hashing (Sections: 17.2, to 17.8)

▪ Chapter 18: Indexing Structures for Files

(Sections: 17.1 to 17.5)

