
Lecturer: Dr Hui Ma

Engineering and Computer Science

Query Optimization

Cost-Based

SWEN304/SWEN435

Outline – Query Evaluation in DBMS

SWEN304/SWEN439 Lect13: Cost-based query optimization 1

SWEN304/SWEN439 Lect13: Cost-based query optimization 2

Outline – Cost-based Query Optimization

▪ Why cost-based optimization?

▪ How to measure cost of query operations?

▪ Cost function of a projection, selection, join, …

▪ How to evaluate query operations?

▪ Algorithms for projection, selection, join, …

▪ Query tree of physical operators

▪ Reading: chapters 17, 18, 19 of 6/E of the
textbook

▪ Supposed knowledge File Organization

Example

Lect13: Cost-based query optimization 3

sid sname rating age

22 Jerry 7 25

31 Tom 8 30

58 Minny 10 22

sid bid day

58

22

101

103

10/09/13

11/09/13

31 103 11/09/13

R (Reserves) S (Sailor)

bid bname color

101

102

Dragon

Moon

blue

red

103

104

105

Star

Clipper

Mary

green

blue

green

B (Boats)
SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

SWEN304/SWEN439

Example

▪ Here is a query tree for the SQL query

▪ Is this optimal?

▪ How good is it?

▪ How to measure “goodness”?

▪ Need to estimate its costs!

SWEN304/SWEN439 Lect13: Cost-based query optimization 4

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

SELECT S.sname

FROM Reserves R, Sailors S

WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

SWEN304/SWEN439 Lect13: Cost-based query optimization 5

Cost-Based Optimization

▪ A good query optimizer does not rely solely on
heuristic rules

▪ It chooses a query execution plan which has the
lowest cost estimate

▪ Or at least one whose costs are reasonably good

▪ After heuristic rules are applied to a query, there still
remain a number of alternative ways to execute it

▪ These alternative ways relay on the existence of
different auxiliary data structures and algorithms

▪ Query optimizer estimates the cost of executing each
of alternative ways, and chooses the one with the
lowest cost

SWEN304/SWEN439 Lect13: Cost-based query optimization 6

Cost Components of a Query Execution

▪ Secondary storage access cost:

▪ Reading data blocks during data searching,

▪ Writing data blocks on disk, and

▪ Storage cost (cost of storing intermediate files)

▪ Computation cost (CPU cost)

▪ Main memory cost (buffer cost)

▪ Communication cost

▪ Very often, only secondary storage access cost is
considered

▪ So, the cost C will be the data size of disk accesses

SWEN304/SWEN439 Lect13: Cost-based query optimization 7

Some Assumptions

▪ To make it simpler, we shall suppose that:

▪ All tuple fields are of a fixed size (although variable
field size tuples are very frequent in practice)

▪ All the intermediate query results are materialized
(although there are some advanced optimizers that
apply pipelined approach)

▪ Materialized: intermediate query results are
stored on a disk as temporary relations

▪ Pipelining: tuples of the intermediate results are
subjected to all subsequent operations without
temporary storing

Example

SWEN304/SWEN439 Lect13: Cost-based query optimization 8

▪ Materialized evaluation:

▪ evaluate one operation at a time, starting from the
bottom

▪ intermediate results are
materialized into temporary
relations (write to disk)

▪ E.g., the result of the join
is materialized, the temporary
relation is then read from disk
to compute the selection

▪ Similarly, the result of the
selection is materialized, and
then from disk to compute the projection

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

How to estimate Query Computation Costs?

6. Find students who major in ‘Math’ and got ‘A+’ in at least one
course offered by computer science department

SWEN304/SWEN439 Lect13: Cost-based query optimization 9

Recall from our exercises:

SWEN 304 Lect12: Heuristic Query Optimization 10

Recall our query answer:

▪ SQL query:

SELECT StudId, Lname

FROM Student s, Grades g, Course c

WHERE s.StudId=g.StudId AND g.CrsId= c.CrsId

AND Grade = ‘A+’ AND Dept = ‘Comp’ AND Major = ‘Math’;

• Transferred into Relational Algebra:

pStudId, LName (σ s.StudId=g.StudId ˄ g.CrsId=c.CrsId ˄ Grade=‘A+’ ˄ Major = ‘Math’

˄ Dept = ‘Comp’ (Course × (Student × Grades)))

Heuristic Query Optimization: An Example

SWEN304/SWEN439 Lect13: Cost-based query optimization 11

How to estimate Query Computation Costs?

▪ Recall our initial query tree:

▪ We start with the sizes of the relations, and then work bottom-up.

How to estimate Query Computation Costs?

SWEN304/SWEN439 Lect13: Cost-based query optimization 12

▪ We start with the sizes of the relations:

▪ Estimate the size for each attribute,

▪ then sum up to get the size of a tuple

▪ Then multiply with the number of tuples in a relation

▪ We apply this approach to the Student table and obtain:

▪ One student tuple requires 23B + 23B + 8B + 11B = 65B

▪ The entire Student table requires 4 x 65B = 260B

23B 23B 8B 11B

How to estimate Query Computation Costs?

SWEN304/SWEN439 Lect13: Cost-based query optimization 13

▪ We start with the sizes of the relations:

▪ For the Course table we obtain: 4 x 34B = 136B

▪ For the Grades table we obtain: 9 x 16B = 144B

15B 5B 2B 11B

23B 23B 8B 11B

8B 5B 3B

SWEN304/SWEN439 Lect13: Cost-based query optimization 14

How to estimate Query Computation Costs?

▪ We start with the sizes of the relations, and then work bottom-up.

▪ For each intermediate result we estimate the size based on the inputs.

4 x 65B = 260B 9 x 16B = 144B

4 x 34B = 136B
36 x 81B = 2,916B

144 x 115B = 16,560B

1 x 115B = 115B

1 x 31B = 31BTotal cost: 20,162B

SWEN304/SWEN439 Lect13: Cost-based query optimization 15

How to estimate Query Computation Costs?

▪ Recall our optimized
query tree:

▪ We estimate the query
costs for this tree, too.

▪ We start with the sizes
of the relations, and
then work bottom-up.

How to estimate Query Computation Costs?

SWEN304/SWEN439 Lect13: Cost-based query optimization 16

4 x 65B = 260B

9 x 16B = 144B4 x 34B = 136B

2 x 65B = 130B

2 x 31B = 62B

3 x 34B = 102B

1 x 31B = 31B

1 x 39B = 39B

1 x 8B = 8B

2 x 16B = 32B

2 x 13B = 26B

3 x 5B = 15B

1 x 18B = 18B

Total cost: 1003B

Which Query Tree is Preferable?

▪ Note: Both query trees compute the same query result,
therefore the size of the result is the same

▪ When intermediate results do not fit into the main memory,
then they have to be stored on hard disk

▪ Hard disk access is expensive (= time-consuming)

▪ Therefore we want to avoid them

▪ Therefore we prefer query trees where the total size of
intermediate results is as small as possible

▪ In our example:

▪ The initial query tree has intermediate sizes up to 20,162B

▪ The optimized query tree has much smaller intermediate sizes
(1003B)

▪ Therefore we prefer the optimized query tree

SWEN304/SWEN439 Lect13: Cost-based query optimization 17

Query Computation Costs for Unary Operators

SWEN304/SWEN439 Lect13: Cost-based query optimization 18

ρf

Query Computation Costs for Binary Operators

SWEN304/SWEN439 Lect13: Cost-based query optimization 19

Estimating the Size of Relations

SWEN304/SWEN439 Lect13: Cost-based query optimization 20

Estimating the Size of Intermediate Results

SWEN304/SWEN439 Lect13: Cost-based query optimization 21

Natural join needs to

remove duplicate attributes,

For equi-join, r = 0

Estimating the Size of Intermediate Results

Find students who major in ‘Math’ and got ‘A+’ in at least one
course offered by computer science department

SWEN304/SWEN439 Lect13: Cost-based query optimization 22

Recall from our exercises:

Estimating the Size of Intermediate Results

SWEN304/SWEN439 Lect13: Cost-based query optimization 23

▪ Example:

▪ We inspect the unary and binary operators that
are used and estimate the parameters for them:

▪ σMajor = ‘Math’ with selection rate aC = 0.5

▪ σDept = ‘Comp’ with selection rate aC = 0.75

▪ σGrade=‘A+’ with selection rate aC = 0.22

▪ pStudId with coincidence rate C = 0.0

▪ pCrsId,StudId with coincidence rate C = 0.0

▪ pStudId with coincidence rate C = 0.0

▪ pStudId,LName with coincidence rate C = 0.0

Estimating the Size of Intermediate Results

▪ Apply them
to our query
tree:

SWEN304/SWEN439 Lect13: Cost-based query optimization 24

4 x 65B = 260B

9 x 16B = 144B4 x 34B = 136B

2 x 65B = 130B

2 x 31B = 62B

3 x 34B = 102B

1 x 31B = 31B

1 x 39B = 39B

1 x 8B = 8B

2 x 16B = 32B

2 x 13B = 26B

3 x 5B = 15B

1 x 18B = 18B

SWEN304/SWEN439 Lect13: Cost-based query optimization 25

Summary

▪ DBMS processes a declarative query by converting it to the
query tree of logical operators, and by optimizing it

▪ looks for a reasonably efficient strategy to implement a query

▪ Heuristic optimization and cost based optimization are two
basic optimization techniques

▪ Cost based optimization is applied to the result of heuristic
optimization

▪ exhaustive analyze the number of disk accesses of alternative
available methods and algorithms to execute a query

▪ Techniques that improve query cost:

▪ Indexing,

▪ Using larger memory,

▪ Sorting

