Query Optimization
Cost-Based

SWEN304/SWEN435

Lecturer: Dr Hui Ma

Engineering and Computer Science

TE WHARE WANAKNCA O TE DPORO O TE IKA & BALL
i@s LNIVERSITY OF WELLIRGTON

- Outline — Query Evaluation in DBMS

| SQL Query
----------------- -| SQL Parser |~
I Relational Algebra Expression \~\
Query Optimizer
_________________ [m=====———apm———————-a System
iQuery Plan,; Cost | <€------ Catalog
| Generator i | Estimator |
1 _ e ___1
| Query Execution Plan ,/"
 €mmmmm e e Query Plan ,*
Interpreter
Y
| Query Result

SWEN304/SWEN439 Lect13: Cost-based query optimization

j Outline — Cost-based Query Optimization

- Why cost-based optimization?
- How to measure cost of query operations?
- Cost function of a projection, selection, join, ...
- How to evaluate query operations?
- Algorithms for projection, selection, join, ...
- Query tree of physical operators

Reading: chapters 17, 18, 19 of 6/E of the
textbook

Supposed knowledge File Organization

SWEN304/SWEN439 Lect13: Cost-based query optimization

Example

R (Reserves) S (Sailor)
sid |bid day sid |sname |rating |age
58 101 |10/09/13 22 |Jerry 7 25
22 (103 |11/09/13 31 |Tom S 30
B (Boats)
bid |bname | color SELECT s.sname

FROM Reserves R, Sailors S
101 | Dragon |blue WHERE rid-ssia AND
102 |Moon red R.bid=100 AND s.rating>5

103 |Star green
104 | Clipper |blue
105 |Mary |green

SWEN304/SWEN439 Lect13: Cost-based query optimization

g Example

- Here is a query tree for the SQL query

- Is this optimal?

- How good is it?

- How to measure “goodness™?
- Need to estimate its costs!

SELECT S.sname
FROM Reserves R, Sailors S

R.bid=100 AND s.rating>5

WHERE rsid=s.sit AND

SWEN304/SWEN439

Lect13: Cost-based query optimization

sSname

bid=100/\ rating >5

\
/

Reserves

sid=sid

Sailors

§ Cost-Based Optimization

- A good query optimizer does not rely solely on
heuristic rules

It chooses a query execution plan which has the
lowest cost estimate

Or at least one whose costs are reasonably good

- After heuristic rules are applied to a query, there still
remain a number of alternative ways to execute it

- These alternative ways relay on the existence of
different auxiliary data structures and algorithms

Query optimizer estimates the cost of executing each
of alternative ways, and chooses the one with the
lowest cost

SWEN304/SWEN439 Lect13: Cost-based query optimization

. Cost Components of a Query Execution

- Secondary storage access cost:
Reading data blocks during data searching,
- Writing data blocks on disk, and
- Storage cost (cost of storing intermediate files)
- Computation cost (CPU cost)
Main memory cost (buffer cost)
- Communication cost

- Very often, only secondary storage access cost is
considered

- So, the cost C will be the data size of disk accesses

SWEN304/SWEN439 Lect13: Cost-based query optimization

=8 Some Assumptions

- To make it simpler, we shall suppose that:

- All tuple fields are of a fixed size (although variable
field size tuples are very frequent in practice)

- All the intermediate query results are materialized
(although there are some advanced optimizers that
apply pipelined approach)

Materialized: intermediate query results are
stored on a disk as temporary relations

Pipelining: tuples of the intermediate results are
subjected to all subsequent operations without
temporary storing

SWEN304/SWEN439 Lect13: Cost-based query optimization

§ Example

Materialized evaluation:
- evaluate one operation at a time, starting from the

bottom

intermediate results are 1T ame
materialized into temporary
relations (write to disk) .

bid=100/\ rating >5

E.g., the result of the join
is materialized, the temporary ‘

relation is then read from disk ><]

to compute the selection / \
Similarly, the result of the

selection is materialized, and Reserves Sailors

then from disk to compute the projection

SWEN304/SWEN439 Lect13: Cost-based query optimization

How to estimate Query Computation Costs?

Recall from our exercises:

Student Grades
LName FName | StudId Major StudId Courld | Grade
Smith Susan 131313 | Comp 007007 C302 A+
|| Bond James 007007 | Math 555555 C302 o
Smith Susan 555555 | Comp 007007 C301 A
Cedil John 010101 Math 007007 M214 A+
131313 C201 B
Course
555555 c201 C
PName | Courld Points Dept
131313 C302 ®
DB Sys | C302 15 Comp
007007 C201 A
SofEng | C301 15 Comp
DisMat | M214 22 | Math 010101 | coo1 @
Pr&Sys | C201 22 Comp

6. Find students who major in ‘Math’ and got ‘A+’ in at least one
course offered by computer science department

SWEN304/SWEN439 Lect13: Cost-based query optimization 9

§l Heuristic Query Optimization: An Example

Recall our query answer:

- SQL query:
SELECT StudId, Lname
FROM Student s, Grades g, Course ¢
WHERE s.StudId=g.StudId AND g.CrsId= c.CrsId
AND Grade = A+’ AND Dept = ‘Comp’ AND Major = ‘Math’;

. Transferred into Relational Algebra:

nStudId, LName (0 s.Studld=qg.StudId A g.CrsId=c.Crsld A Grade='A+’' A Major = ‘Math’
A Dept = ‘comp (COUrse X (Student x Grades)))

SWEN 304 Lect12: Heuristic Query Optimization 10

. How to estimate Query Computation Costs?

- Recall our initial query tree:

TStudId, LName

Us.StudId:g.StudId Ag.Crsld=c.CrsIldAGrade="A+" A Major = ‘Math’ A Dept = ‘Comp’
X
% Course

Student Grades

We start with the sizes of the relations, and then work bottom-up.

SWEN304/SWEN439 Lect13: Cost-based query optimization 11

How to estimate Query Computation Costs?

- We start with the sizes of the relations:
Estimate the size for each attribute,
then sum up to get the size of a tuple
Then multiply with the number of tuples in a relation

We apply this approach to the Student table and obtain:
One student tuple requires 23B + 23B + 8B + 11B = 65B
The entire Student table requires 4 x 65B = 260B

Student

LName FName | StudId Major

Smith Susan 131313 | Comp

Bond James 007007 | Math

Smith Susan 555555 | Comp

Cecil John 010101 | Math
23B 23B 8B 11B

SWEN304/SWEN439

Lect13: Cost-based query optimization

12

How to estimate Query Computation Costs?

- We start with the sizes of the relations:
- For the Course table we obtain: 4 x 34B = 136B
- For the Grades table we obtain: 9 x 16B = 144B

Grades

Studld Courld | Grade
007007 C302 A+
555555 C302 ®
007007 C301 A
007007 M214 A+
131313 C201

555555 C201 C
131313 C302 ®
007007 C201 A
010101 C201 o)

Student

LName FName | StudId Major
Smith Susan 131313 | Comp
Bond James 007007 | Math
Smith Susan 555555 | Comp
Cecil John 010101 | Math
23B 23B 8B 11B
Course

PName | Courld | Points Dept
DB Sys | C302 15 Comp
SofEng | C301 15 Comp
DisMat M214 22 Math
Pr&Sys | C201 22 Comp
15B 5B 2B 11B
SWEN304/SWEN439

8B 5B 3B

Lect13: Cost-based query optimization

13

How to estimate Query Computation Costs?

We start with the sizes of the relations, and then work bottom-up.
For each intermediate result we estimate the size based on the inputs.

Total cost: 20,162B 1 x 31B =31B
TStudId, LName

1x115B =115B
Us.StudId:g.StudId Ag.Crsld=c.CrsIldAGrade="A+" A Major = ‘Math’ A Dept = ‘Comp’

X
144 x 115B = 16,560% \

36 x 81B =2,916B , X Course
/ \ 4 X 34B = 136B
Student Grades

4 x 65B = 260B 9x 16B =144B

SWEN304/SWEN439 Lect13: Cost-based query optimization 14

. How to estimate Query Computation Costs?

- Recall our optimized TStudld, LName
query tree: |

<] g.StudId=s.StudId

N

i T TlStudId, LN
We estimate the query Studld u ame
costs for this tree, too. Y
[>c.cre1d=g.Crsid Major = 'Math
We start with the sizes / \
of the relations, and i Student
Crsld TCrsld, StudId
then work bottom-up.
Opept = *Comp’ OGrade="A+"
Course Grades

SWEN304/SWEN439 Lect13: Cost-based query optimization 15

How to estimate Query Computation Costs?

Total cost: 1003B Tstudtd, Name + X 31B = 31B

<] g.studid=s.studid 1 X 39B = 39B

N

TStudld Tlstudid, LName 2 X 31B = 62B

1x 18B = 188 Plecrsid=g.crsid OMajor ="'Math’ 2 v 65B = 130B

\ Student 4 x 65B = 260B

2 x 13B = 26B
3 X 34B = 102B YDept = ‘Comp’ OGrade="A+’

1x 8B =8B

2 x 16B = 32B

Course Grades
4 x 34B = 136B Hr 9x 16B = 144B

SWEN304/SWEN439 Lect13: Cost-based query opumizaton 16

8 Which Query Tree is Preferable?

- Note: Both query trees compute the same query result,
therefore the size of the result is the same

- When intermediate results do not fit into the main memory,
then they have to be stored on hard disk
Hard disk access is expensive (= time-consuming)
Therefore we want to avoid them

Therefore we prefer query trees where the total size of
intermediate results is as small as possible
In our example:

The initial query tree has intermediate sizes up to 20,162B

The optimized query tree has much smaller intermediate sizes
(1003B)

Therefore we prefer the optimized query tree

SWEN304/SWEN439 Lect13: Cost-based query optimization 17

Query Computation Costs for Unary Operators

e selection ocis linear in the size number n of tuples of the involved relation

e scan the relation one tuple after the other
e check for each tuple, whether the condition C is satisfied or not

s keep exactly those tuples satisfying C

e projection mar is in O(n - log n) with the number n of tuples

e order the relation according to the attributes in AL
(this is the most costly part leading to the complexity in O(n - logn))

e scan the relation one tuple after the other

e project each tuple to the attributes in AL and check, whether result is
the same as for previous tuple (duplicate elimination)

e Note: SQL does not eliminate tuples, i.e. costs of projection are in O(n),

but DISTINCT needs the ordering

e renaming p, can be neglected

SWEN304/SWEN439 Lect13: Cost-based query optimization

18

Query Computation Costs for Binary Operators

e join < is in O(n - logn) with n = n; + no, where n; are the respective
numbers of tuples in the two relations involved

e the easiest idea is to use a nested loop:

e scan the first relation one tuple after the other

e for each tuple scan the second relation to find matching tuples, i.e., those
coinciding with the given tuple on the common attributes

e in case tuples match, take the joined tuple into the result relation
e more efficient is the merge join:

e sort both relations (this is the most costly part)
e scan both relations simultaneously to find matching tuples

e in case tuples match, take the joined tuple into the result relation

e union U is in O(n -logn) with n = n; + na, where n; are the respective
numbers of tuples in the two relations involved (analogously for difference —)

e sort both relations as for the merge join

e scan simultaneously to detect duplicates

SWEN304/SWEN439 Lect13: Cost-based query optimization

19

Estimating the Size of Relations

e let R={Ai,..., A} be a relation schema

e determine the size of a relation r over RK:

e let n denote the average number of tuples in the relation r
e let £; denote the the average space (e.g., in bits) for attribute A; in a tuple

inr

k
e then n-) £; is the space needed for the relation r

i=1

e determine the size of intermediate relations in a query using the query tree:

e assign the size of the relation to each leaf node R

e for a renaming node the assigned size is exactly the size s assigned to the
successor

SWEN304/SWEN439 Lect13: Cost-based query optimization 20

Estimating the Size of Intermediate Results

e for a selection node o the assigned size is ac - 5, where s is the size assigned to
the successor and 100 - ac is the average percentage of tuples satisfying C

Ti :
e for a projection node g, the assigned sizeis (1 — C;)-s-—, wherer; (r) is
r

the average size of a tuple in a relation over R; (R), s is the size assigned to
the successor and C; is the probability that two tuples coincide on R;

T : .
(1-C;)-s-—=(1—-C;) -n-r; where n is average number of tuples in
T

R-relation Natural join r_leeds to_
remove duplicate attributes
For equi-join, r=0
S1 52
e for a join node the assigned sizeis —-p-—-(r;y + 79 —), where s; are the
1 ra

sizes of the successors, r; are the corresponding tuple sizes, r is the size of a
tuple over the common attributes and p is the matching probability

e for a union node the assigned size is s1 + so — p-s1 with the probability p
for tuple of R to coincide with a tuple over Ro

o for a difference node the assigned size is s; - (1 — p) where (1 —p) is
probability that tuple from R;-relation does not occur as tuple in Ra-relation

SWEN304/SWEN439 Lect13: Cost-based query optimization 21

Estimating the Size of Intermediate Results

Recall from our exercises:

Grades

StudId Courld | Grade
007007 C302 A+
555555 C302 o
007007 C301 A
007007 M214 A+
131313 C201 B
555555 C201 C
131313 C302 o
007007 C201 A
010101 C201 o

Student

LName [FName | StudId Major
Smith Susan 131313 | Comp
Bond James 007007 | Math
Smith Susan 555555 | Comp
Ceclil John 010101 | Math
Course

PName | Courld | Points Dept
DB Sys | C302 15 Comp
SofEng | C301 15 Comp
DisMat | M214 22 Math
Pr&Sys | C201 22 Comp

SWEN304/SWEN439

Lect13: Cost-based query optimization

Find students who major in ‘Math” and got ‘A+’ in at least one
course offered by computer science department

il Estimating the Size of Intermediate Results

» Example:

- We inspect the unary and binary operators that
are used and estimate the parameters for them:
Omaior = ‘Math’ With selection rate ac = 0.5
Opept = ‘comp’ With selection rate ac = 0.75
Ocrage=a+’ With selection rate a- = 0.22

Teruaig WIth coincidence rate C = 0.0
Teretd studid With coincidence rate C = 0.0
Teruaig With coincidence rate C = 0.0
Tstudid LName With coincidence rate C = 0.0

SWEN304/SWEN439 Lect13: Cost-based query optimization 23

Estimating the Size of Intermediate Results

" Apply them TStudid, LName 1x31B =31B
to our query ‘
tree: <] g.studid=s.studid 1 X 39B = 39B
1 x 8B =88 TStudlId Tlstudid, LName 2 X 31B = 62B
|
1x 18B = 188 Plecrsid=g.crsid OMajor ="'Math’ 2 v 65B = 130B
\ Student —
3 x 5B = 15B 7crsid Teretd, Studid 4 x 65B = 2608B
2x 13B = 26B
3 x 34B = 102B 9bept = ‘Comp’ OGrade="A+'
2 x 16B = 32B
Course Grades

4 x 34B = 136B Ox 16B =144B

SWEN304/SWEN439 Lect13: Cost-based query optimization 24

= Summa ry
DBMS processes a declarative query by converting it to the

query tree of logical operators, and by optimizing it
looks for a reasonably efficient strategy to implement a query

Heuristic optimization and cost based optimization are two
basic optimization techniques

Cost based optimization is applied to the result of heuristic
optimization
exhaustive analyze the number of disk accesses of alternative
available methods and algorithms to execute a query

Techniques that improve query cost:
Indexing,
Using larger memory,
Sorting

SWEN304/SWEN439 Lect13: Cost-based query optimization 25

