
Lecturer: Dr Hui Ma

Engineering and Computer Science

Update Anomalies
and Lossless Join

SWEN304/SWEN435

SWEN304/SWEN439 Lect14: Update Anomalies 1

Database Design Quality

▪ Logical database design aims at a layout of relational
tables such that:

▪ most common queries can be processed efficiently

▪ data redundancies and processing difficulties with
database are minimised

▪ We will now focus on the second objective:

▪ find semantic properties of well-designed databases:

absence of data redundancies, update anomalies,
data inconsistencies

▪ develop automatic tools to achieve these properties

SWEN304/SWEN439 Lect14: Update Anomalies 2

Database Design Quality

▪ Database normalisation: obtain database schema
avoiding redundancies and processing difficulties

▪ Database denormalisation: join normalized relation
schemata for the sake of better query processing

SWEN304/SWEN439 Lect14: Update Anomalies 3

Database Design Quality

▪ Update anomalies

▪ Lossless join decomposition

▪ Functional dependencies

▪ Normal forms: define to which extent we should
normalize

▪ Synthesis algorithm (3NF decomposition) and
BCNP decomposition algorithm: the formal
normalization methods that show how to
normalize

▪ Readings from the textbook:
▪ Chapter 15

▪ Chapter 16

SWEN304/SWEN439 Lect14: Update Anomalies 4

Outline

▪ Universal Relation Schema

▪ Data redundancy via efficient query processing

▪ Data redundancy and redundancy-causing
dependencies

▪ Processing difficulties: consistency validation,
update anomalies

▪ Lossless join decomposition

SWEN304/SWEN439 Lect14: Update Anomalies 5

Universal Relation Schema

▪ In the theory of the relational data model, there exists
an assumption about the existence of a universal relation
schema (URS), denoted (U, C)

▪ Universal relation schema contains all attributes and all
constraints of the UoD

▪ A URS is a possible database schema of a UoD database

▪ There are many consequences:

▪ universal relation as an instance over URS,

▪ unique role of attributes,

▪ after decomposing a URS, each relation schema has a
different set of attributes, so the relation schema names
can be replaced by attribute sets,

▪ sound theory,…

SWEN304/SWEN439 Lect14: Update Anomalies 6

URS Example: Employee

▪ Table Employee(e_no, e_name, salary, child) with
following instance

e_no e_name salary child

003 Homer 2000 Bart

003 Homer 2000 Lisa

007 Marge 3000 Bart

007 Marge 3000 Lisa

SWEN304/SWEN439 Lect14: Update Anomalies 7

Trade-off:
Data Redundancy but Efficient Query Processing

▪ Redundancy-causing data dependency:

different rows with same entry in e_no-column always
have same entries in e_name-column and in salary-
column, respectively

▪ If employee has two children, then e_name and salary
need to be stored repeatedly for that employee

▪ Query: List the e_name of all employees who have a
child named Bart:

πe_name(σchild=’Bart’(Employee))

▪ Query can be processed efficiently (no join needed)

SWEN304/SWEN439 Lect14: Update Anomalies 8

Trade-off:
No Data Redundancy but no Efficient Query Processing

▪ Relations Info(e_no, e_name, salary) and Parent(e_no, child)

▪ Due to data dependency Employee is the lossless join of Info
and Parent

▪ Data redundancies eliminated

▪ Query: List the e_name of all employees who have a child
named Bart:

πe_name(σchild=’Bart’(Info * Parent))

▪ Query processing requires join

e_no e_name Salary

003 Homer 2000

007 Marge 3000

e_no Child

003 Bart

003 Lisa

007 Bart

007 Lisa

Info

Parent

SWEN304/SWEN439 Lect14: Update Anomalies 9

▪ Employee(e_no, e_name, salary, child) with:

▪ e_no functionally determines e_name (we write e_no→
e_name):

▪ For the same entry in e_no-column there is always the
same entry in e_name-column

▪ e_no does not functionally determine child:

▪ First and second tuple have same e_no-entry, but
different child-entries

Redundancy-causing Dependencies

e_no e_name salary child

003 Homer 2000 Bart

003 Homer 2000 Lisa

SWEN304/SWEN439 Lect14: Update Anomalies 10

▪ What does data redundancy mean:
▪ We obtain duplicates for some projections, such as

{e_no, e_name} or {e_no, salary}

▪ We can infer data entries from other data entries and
data dependencies:

Redundancy-causing Dependencies

e_no e_name

003 Homer

003 Homer

e_no salary

003 2000

003 2000

e_no e_name salary child

003 Homer 2000 Bart

003 ? ? Lisa

SWEN304/SWEN439 Lect14: Update Anomalies 11

Processing Difficulties: Consistency Validation

▪ Consistency of key constraints is simple to check
(database practice):

▪ Just check uniqueness of entries in key columns

▪ Info(e_no, e_name, salary) and Parent(e_no,child) only
exhibit keys

e_no child

003 Bart

003 Lisa

007 Bart

007 Lisa

e_no e_name salary

003 Homer 2000

007 Marge 3000

Info Parent

SWEN304/SWEN439 Lect14: Update Anomalies 12

Processing Difficulties: Update Anomalies
▪ Data consistency prohibitively expensive to check for non-

key constraints, e.g. any two rows with same e_no-entry
must have same e_name-entry

▪ Relation Employee(e_no, e_name, salary, child) with
following instance

▪ Updates for redundant data must be processed for all its
occurrences

▪ Data redundancy may cause anomalies when updating
required

e_no e_name salary child

003 Homer 2000 Bart

003 Homer 2000 Lisa

007 Marge 3000 Bart

007 Marge 3000 Lisa

SWEN304/SWEN439 Lect14: Update Anomalies 13

Processing Difficulties: Update Anomalies
▪ insertion of (003, Homer, 2500, Maggie) into Person-table:

satisfies key {e_no, child}, but violates e_no → salary

▪ update of (003, Homer, 2000, Lisa) to (003, Homer, 2500,
Lisa) in Person-table: satisfies key {e_no, child}, but violates
e_no → salary

e_no e_ name salary child

003 Homer 2000 Bart

003 Homer 2000 Lisa

003 Homer 2500 Maggie

007 Marge 3000 Bart

007 Marge 3000 Lisa

e_no e_name salary child

003 Homer 2000 Bart

003 Homer 2500 Lisa

007 Marge 3000 Bart

007 Marge 3000 Lisa

SWEN304/SWEN439 Lect14: Update Anomalies 14

Universal Relation: Faculty

Ray820INETC1010John010

Robert222A+C++C20180James007

Robert222C++C20118Susan555

Peter333MathM21418Susan131

Peter99A+AlgorithmC10380James007

Vladimir999B+MathM11418Susan555

Ewan101AJavaC10280James007

Ewan101B-JavaC10218Susan131

Peter333A+MathM21480James007

LeNameLecIdGrdCoNameCourIdNoPtsStNameStudId

SWEN304/SWEN439 Lect14: Update Anomalies 15

Update Anomalies

▪ The URS Faculty satisfies (and suppose has) two
keys:

▪ StudId + CourId, and

▪ StudId + LecId

▪ Recall entity integrity constraint: a constraint
requiring that no component of any relation schema
key may have a null value

▪ Update anomalies are:

▪ Insertion anomaly,

▪ Deletion anomaly, and

▪ Modification anomaly

SWEN304/SWEN439 Lect14: Update Anomalies 16

Insertion Anomaly

▪ A new student cannot be inserted before he/she
enrolls a course that is already lectured by someone

▪ A new course cannot be introduced before it is
associated with a lecturer and enrolled by some
students

▪ A new lecturer cannot be hired before he / she is
assigned a course and at least one student enrolled
the course taught by the new lecturer

SWEN304/SWEN439 Lect14: Update Anomalies 17

Deletion Anomaly

▪ If there is a student that is the only one
associated either with a course, or a lecturer (or
both), and this student withdraws, deleting his /
her tuple will cause the loss of course, or
lecturer information

▪ e.g.

▪ ((StudId, 10), (StName, John))

▪ Similarly, if there is a lecturer that…, and
similarly if there is a course…

SWEN304/SWEN439 Lect14: Update Anomalies 18

Modification Anomaly

▪ Modification anomaly is a direct consequence of
data redundancy in the universal relation,

▪ refers to the fact that modification of an attribute
value have to be performed on many tuples,
instead of on just one

▪ For example:

▪ Suppose James passes another exam, then
besides a new tuple, the values of the NoPts
attribute of all tuples belonging to James have to
be modified, as well

SWEN304/SWEN439 Lect14: Update Anomalies 19

A Question

▪ How to prevent update anomalies?

a) To place a ban on database updates

b) To leave the database in an inconsistent state

c) To brake URS into smaller pieces that will
exhibit less redundancy-causing dependencies

SWEN304/SWEN439 Lect14: Update Anomalies 20

How to Avoid Update Anomalies

▪ To avoid update anomalies we need to avoid data
redundancies (redundancy-causing dependencies)

▪ We need split the universal relation onto a number of
smaller ones which do not contain data redundancies

▪ Splitting a relation into a set of relations is called
decomposition

▪ A further natural expectation would be that we should be
able to recover the universal relation (or its arbitrary part)
by using this decomposition without any loss of
information

▪ We give a formal definition of lossless join decomposition
later

SWEN304/SWEN439 Lect14: Update Anomalies 21

Decomposing a Universal Relation

▪ Projection is the only relational algebra operation that
can be used to decompose a universal relation r
over schema R

▪ Requirement R1  R2 = R (attribute conservation)

▪ e.g.

Department (LecId, LeName, CourId, CoName, DptId,
DptName)

We split onto:

Lecturer (LecId, LeName, CourId)

Course (CourId, CoName, DptId, DptName)

r

r 1 = R1(r) r 2 = R2(r)

SWEN304/SWEN439 Lect14: Update Anomalies 22

Reconstructing the Universal Relation

▪ Natural join is the only relational algebra operation that
can be used to recover universal relation or one of its
parts from projections

▪ This reconstruction places an additional requirement
towards decomposition

R1  R2  ,

otherwise the join would turn into cross product

r2 = R2(r)

R1(r) * R2(r)

r1 = R1(r)

SWEN304/SWEN439 Lect14: Update Anomalies 23

Additive (lossy) Join

The condition R1  R2   is even not sufficient to

guaranty proper reconstruction

102

201

CBA

R

SELECT A, B INTO R1 FROM R; SELECT B, C INTO R2 FROM R;

R1

02

01

BA

R2

10

20

CB

SWEN304/SWEN439 Lect14: Update Anomalies 24

A Query: SELECT * FROM R1 NATURAL JOIN R2;

▪ Which answer will be produced?

▪ How to explain b) being produced by SQL?

▪ Lossy (or additive) join?

A Question

102
201
CBA

Ra)

102
202
101
201
CBA

R’
b)

R1

02
01
BA

R2

10
20
CB

SWEN304/SWEN439 Lect14: Update Anomalies 25

Lossless Join Decomposition

▪ A decomposition D = {R1,, R2,, …, Rm } of a relation R
has the lossless (nonadditive) join property wrt.
the set of dependencies F on R if, for every relation
r that satisfies F,

R1(r) * , … , * Rm(r) = r
where * is the natural join of all the relations in D

▪ It is proved in the theory of the relational data
model that the decomposition of a relation schema
R onto R1 and R2 is lossless (nonadditive) if the
intersection R1  R2 contains a key of R1 or a key of
R2

SWEN304/SWEN439 Lect14: Update Anomalies 26

Lossless Join Decomposition Examples

▪ Decomposition of

Department (LecId, LeName, CourId, CoName, DptId, DptName)

onto

Lecturer (LecId, LeName, CourId),

Course (CourId, CoName, DptId, DptName)

▪ is a lossless join decomposition, because

▪ {LecId, LeName, CourId }  {CourId, CoName, DptId,
DptName } = {CourId} which is a key of Course

SWEN304/SWEN439 Lect14: Update Anomalies 27

Summary

▪ Update anomalies emerge when one relation
contains data redundancies

▪ A solution of the problem is sought through
decomposition

▪ Lossless (nonadditive) join ensures that the original
relation can be recovered from its projections, and is
guaranteed by the presence of a relation schema
key in the intersection of the decomposition

