
Lecturer: Dr Hui Ma

Engineering and Computer Science

Functional Dependencies

SWEN304/SWEN435

SWEN304/SWEN435 Lect15: Functional Dependencies 1

Outline

▪ Definition of functional dependency

▪ Semantics of a functional dependency

▪ Closure of a set of functional dependencies

▪ Finding a “minimal” cover

▪ Functional dependencies and a relation schema
key

▪ Readings from the textbook:
▪ Chapter 15

SWEN304/SWEN435 Lect15: Functional Dependencies 2

Functional Dependency

▪ One of the most important constraints for the
relational database design

▪ Let URS (U, C) be given, and X, Y  U

▪ The functional dependency (abbreviated FD)
between attribute sets X and Y is an expression of
the form

f : X→Y,

where f is an (optional) name, X is left-hand side
LHS (f), and Y is right-hand side RHS (f)

▪ X functionally defines Y, and Y functionally
depends on X

SWEN304/SWEN435 Lect15: Functional Dependencies 3

Semantics of a Functional Dependency

▪ The meaning of the expression

f : X→Y

is that with each particular X value there is
always the same Y value associated

▪ A functional dependency is a semantic constraint
that can be defined only by considering rules of
behavior in the UoD

▪ A functional dependency X→Y is to be defined
only when it is known that in the real world,
each X value is associated with at most one Y
value

SWEN304/SWEN435 Lect15: Functional Dependencies 4

Functional Dependency - Notations

▪ An expression having semantically defined
attributes:

{StudId, CourId } → {Grade, Year }

will be considered as being equivalent to

StudId + CourId →Grade + Year

▪ If the sets are singletons, then

StudId →SName

▪ An expression having semantically undefined
attributes

{A, B } → {C, D }

will be considered as being equivalent to

AB →CD, or A + B →C + D

SWEN304/SWEN435 Lect15: Functional Dependencies 5

FDs Satisfied by the Relation "Faculty"

StId StName NoPts CourId CoName Grd LecId LeName

007 James 80 M114 Math A+ 777 Mark

131 Susan 18 C102 Java B- 101 Ewan

007 James 80 C102 Java A 101 Ewan

555 Susan 18 M114 Math B+ 999 Vladimir

007 James 80 C103 Algorith A+ 99 Peter

131 Susan 18 M214 Math  333 Peter

555 Susan 18 C201 C++  222 Robert

007 James 80 C201 C++ A+ 222 Robert

010 John 0 C101 Inet  820 Ray

SWEN304/SWEN435 Lect15: Functional Dependencies 6

Defining Functional Dependencies

▪ UOD1

▪ Consider the set of attributes

{StudId, CourId, Grade}

▪ and the rule of behavior

“A student can enroll a course at most once”.

▪ Then

StudId + CourId →Grade

SWEN304/SWEN435 Lect15: Functional Dependencies 7

Defining Functional Dependencies

▪ UOD2

▪ Consider the set of attributes {StudId, CourId,
Term, Grade}, and the rule of behavior “A student
can enroll a course more than once, but each time
in a different term”. Then

StudId + CourId + Term →Grade

▪ Consider the set of attributes {StudId, CourId,
Term, AssigNo, Marks}, and the rule of behavior “A
student can enroll a course more than once, but
each time in a different term and each time can do
each assignment only once”. Then

StudId + CourId + Term + AssigNo →Marks

SWEN304/SWEN435 Lect15: Functional Dependencies 8

Recall: The Implication Operation from Logic
▪ Implication p  q is a logic operation

▪ q is a logical consequence of p

▪ p  q is true if either the antecedent (p) is false or both
p and the consequent (q) are true

▪ Recall: The truth table of the implication operation

▪ We will use it several times in our lectures

▪ For example, for the definition of functional dependency

p q 

False False True

False Тrue True

Тrue False False

Тrue Тrue True

▪ A particular relation r (U) satisfies the functional
dependency X→Y if

(u, v r (U)(u [X] = v [X]  u [Y] = v [Y])

▪ i.e., whenever two tuples agree on all attributes in X,
they also agree on all attributes in Y

▪ Note: This statement considers only one particular
relation

▪ To claim that FD X →Y is generally valid, we would
have to consider all relations over (U, C) that are
plausible in the perceived UoD

▪ The set of all FDs F that are valid in the UoD is a subset
of C - the set of relation schema constraints C

SWEN304/SWEN435 Lect15: Functional Dependencies 9

Satisfaction of a Functional Dependency

SWEN304/SWEN435 Lect15: Functional Dependencies 10

Some Questions

▪ Does this particular Department relation satisfy the
functional dependency LecId →CourId ?

▪ Is LecId →CourId valid in the UoD?

▪ Can we conclude that in the CS Department each
lecturer always teaches at most one paper?

▪ Does this particular Department relation satisfy the
functional dependency DptId →CourId ?

▪ Is DptId →CourId valid in the UoD?

Department

LecId LeName CourId CoName DptId DptName

12 Ewan C102 Java CS Comp Sc

33 Pavle C302 DB Sys CS Comp Sc

SWEN304/SWEN435 Lect15: Functional Dependencies 11

Redundant Functional Dependencies

▪ A given set of functional dependencies can contain
some redundant ones

▪ Redundant functional dependencies are those that
are a logical consequence of some other ones, or
that are trivial

▪ FD on URS is said to be trivial if it is satisfied by all
relations over (U, C)

▪ an FD X → Y on URS is trivial if and only if Y ⊆ X

holds

SWEN304/SWEN435 Lect15: Functional Dependencies 12

Redundant Functional Dependency Examples

▪ Suppose the following set of FDS is given

F = {StdId →StName, CourId →CoName , LecId
→LecName , LecId →CourId }

▪ Redundant FDs:

▪StName →StName

(trivial),

▪CourId +StdId →CoName

(redundant – consequence of CourId →CoName),

▪LecId + LecName →CourID

(redundant – consequence of LecId →CourId),

▪LecId →CoName

(transitive – consequence of LecId →CourId and
CourId →CoName)

SWEN304/SWEN435 Lect15: Functional Dependencies 13

Redundant Functional Dependencies

▪ Functional dependencies are constraints that, as all
other constraints, when once defined, should be
satisfied in a database

▪ Redundant functional dependencies are satisfied
when the basic ones are satisfied

▪ Accordingly, redundant FDs are noxious, because
their satisfaction checking is just using precious
computer resources in vain

SWEN304/SWEN435 Lect15: Functional Dependencies 14

Covers of a Set of FDs

▪ The goal is to replace a given, potentially redundant,
set of FDs F with another one E that contains only
functional dependencies that are necessary and
sufficient to describe perceived rules of UoD behavior

▪ That replacement may be done only if each FD in F is
either contained in E or represents a logical
consequence of E

▪ A set of functional dependencies E is said to cover
another set of functional dependencies F if every FD
in F is also in E +

▪ F and E are said to be equivalent, or to have equal
closures (F + = E +), also it is said that they cover
each other

SWEN304/SWEN435 Lect15: Functional Dependencies 15

Closure of a Set of FDs

▪ The closure of F (denoted F +) contains all FDs
in F and all consequences of F

▪ It is computed by an exhaustive application of
inference rules on a given set F of FDs

SWEN304/SWEN435 Lect15: Functional Dependencies 16

Inference Rules

▪ Given U, F, and X, Y, Z, W  U

1. (Reflexivity) Y  X ⊨ X →Y (trivial FD)

2. (Augmentation) X →Y  W  Z ⊨ XZ →YW (partial FD)

3. (Transitivity) X →Y  Y →Z ⊨ X →Z (transitive FD)

4. (Decomposition) X →YZ ⊨ X →Y  X →Z

5. (Union) X →Y  X →Z ⊨ X →YZ

6. (Pseudo transitivity) X →Y  WY →Z ⊨ WX →Z

(if W = , pseudo transitivity turns into transitivity)

▪ Inference rules 1, 2 and 3 are known as Armstrong’s
inference rules

SWEN304/SWEN435 Lect15: Functional Dependencies 17

Computing Closures

▪ One way to check whether one set of FDs can be
replaced by another, is to check whether they have
equal closures

▪ But computing the closure of a set F of FDs is very
complex

▪ |F +| > 2 |U | (U is the universal set)

▪ Instead of comparing many sets of FDs and
computing their closures, we look for a minimal
cover of F directly

▪ This is done using the closure of a set of attributes

▪ Given U, F and X  U

▪ Closure of X with regard to F is defined as

X F
+ = {A U | X →A F + }

and is used in finding the minimal cover of F

SWEN304/SWEN435 Lect15: Functional Dependencies 18

Closure of a Set of Attributes

SWEN304/SWEN435 Lect15: Functional Dependencies 19

Computing Closure of X (set of attributes)

X += X ; // according to reflexivity

oldX + = ∅

while (oldX + X +) {

oldX + = X +

for (each FD Y →Z F) {

if (Y  X +) {

X + = X +  Z ; //according to

// augmentation & transitivity

}

}

}

Example

▪ F = {B → C, A→B}

▪ A+ =

SWEN304/SWEN435 Lect15: Functional Dependencies 20

SWEN304/SWEN435 Lect15: Functional Dependencies 21

Minimal Cover

▪ A set of FDs G is a minimal cover of the set F if
Each FD in G has a single attribute on its right
hand side

1. G is left reduced (no one FD in G has any
superfluous attribute on its left hand side, (a left
reduced FD = total FD, a not reduced FD =
partial FD))

(X →A G)(B X)((X - B)→A G +)

2. G is non-redundant (doesn’t contain any trivial or
pseudo transitive FD)

(X →A G)((G - {X →A })+  G +),

3. F + = G +

SWEN304/SWEN435 Lect15: Functional Dependencies 22

Finding a Minimal Cover

1. Set G = F

2. Replace each FD X →{A1, A2,…, An } in G with
the following n FDs X →A1, X → A2 ,…, X →An

3. Do left reduction

for each FD X →A in G do
for each B in X do

if A (X - B)+
G then

G = (G - {X →A })  {(X - B)→A }

4. Eliminate redundant FDs

for each FD X →A in G do
if A (X)+

G - {X →A } then G = G - {X →A }

SWEN304/SWEN435 Lect15: Functional Dependencies 23

Finding a Minimal Cover – Step 2

F = {A→B, B → C, A →CD, AB→C }

▪ Apply the Decomposition Inference Rule

G = {A→B, B → C, A →CD, AB→C }

▪ The Decomposition Inference Rule should be
applied only onto functional dependencies
having more than one attribute on their RHS

G1 = {A→B, B → C, A →C, A →D, AB→C }

SWEN304/SWEN435 Lect15: Functional Dependencies 24

Finding a Minimal Cover – Step 3

▪ Do Left Reduction

▪ Only the functional dependencies having more than
one attribute on their LHS may be reduced

G1 = {A→B, B → C, A →C, A →D, AB→C }

▪ To test whether there is a superfluous attribute on the
LHS, we try to remove each of the LHS attributes and
apply attribute closure algorithm to see if the RHS still
functionally depends on the remainder of the LHS

(AB - A)+ = B + = BC  C (AB - A)+ 

G2 = {A→B, B → C, A →C, A →D, B→C }

(AB - B)+ = A + = ABCD  C (AB - B)+ 

G2 = {A→B, B → C, A →C, A →D, A→C }

(G2 should contain only one B→C or A→C)

SWEN304/SWEN435 Lect15: Functional Dependencies

25

Finding a Minimal Cover – Step 4

▪ Eliminate Redundant FDs

▪ In principle, this step should be applied on each
FD, but we shall consider only the highlighted one

H = {A→B, B →C, A →D, A→C }

▪ To check whether a FD is redundant, we compute
the attribute closure of its LHS with regard to the
given set of FDs without the FD considered

▪ If the RHS is in the attribute closure, then the FD
is redundant

A +H - {A→C } = ABCD  C A +H - {A→C }

H1 = {A→B, B →C, A →D }

▪ Each relation schema key is the consequence of a
functional dependency from F +

▪ Let R (A1,….., An) be a relation schema and F the
set of functional dependencies in R

▪ Set of attributes X  R is a relation schema key if

1o X →R F +

2o (Y  X)(Y →R F +)

▪ Not null condition still applies to X

▪ A prime attribute is a relation schema attribute
that belongs to any of the keys

▪ Primary key is still just one of the keys

SWEN304/SWEN435 Lect15: Functional Dependencies 26

FDs and a Relation Schema Key

SWEN304/SWEN435 Lect15: Functional Dependencies 27

A Key Finding Algorithm

X := R (*X is initialized as a super key*)

for each A in X do

if R  (X - A)+
F then

X := X - A

▪ Example.

▪ Given: R = {A, B, C }, F = {A →B, B →C }

▪ X = ABC (ABC is a superkey)

▪ (X - A)+
F = BC (*So, our superkey is still X = ABC *)

▪ (X - B)+
F = ABC (* B is not needed, so X = AC *)

▪ (X - C)+
F = ABC (* C is not needed, so X = A *)

▪ K (R) = A

SWEN304/SWEN435 Lect15: Functional Dependencies 28

Summary

▪ The functional dependency is a semantic constraint
that mirrors certain type of UoD rules of behavior

▪ Functional dependencies are important relational
constraints

▪ Removing harmful redundant functional
dependencies is done by finding a ‘minimal’ cover

▪ A minimal cover is found using the cover of a set of
attributes as a tool

▪ A relation schema key is a consequence of a
functional dependency

▪ Each attribute of a relational schema is functionally
dependent on each of the keys

