
Lecturer: Dr Hui Ma

Engineering and Computer Science

Normal Forms

SWEN304/SWEN435

SWEN 304/435 Lect16: Normal Forms 1

Normalization

▪ Normalization is used to design a set of relation schemas
that is optimal from the point of view of database
updating

▪ Normalization starts from a universal relation schema

▪ There are six normal forms, of which only three are
based on functional dependencies

▪ Normal forms define to which extent we should
normalize

▪ The Synthesis algorithm and the Decomposition
algorithm represent the formal normalization methods

▪ Readings from the textbook:

▪ Chapter 15 : 15.1-15.5,

▪ Chapter 16 : 16.1 -16.3

SWEN 304/435 Lect16: Normal Forms 2

Normal Forms

▪ Normalization is a procedure that transforms a
universal relation schema (U, F) into a set of
relation schemas

S = {Ni (Ri , Ki) | i = 1,…, n }

▪ The goal of the normalization is to avoid update
anomalies by achieving a specified normal form

▪ There are six (vertical) normal forms defined in the
theory of the relational data model

▪ These are: first, second, third, Boyce–Codd, fourth,
and fifth normal form

▪ The second, third and Boyce–Codd normal form are
based on functional dependencies

SWEN 304/435 Lect16: Normal Forms 3

▪ A relation schema is in first normal form (1NF) if
the domain of its each attribute has only atomic
values

▪ No relation schema attribute is allowed to be composite
or multi-valued

▪ Example:

▪ Student (StID, StName, {CourId, CoName, Grade})
(*1NF*)

▪ Very often, the term "normalized relation" means "at
least in the first normal form"

▪ From now on, if not otherwise noted, we shall
consider only relation schemas that are at least in the
first normal form

First Normal Form

SWEN 304/435 Lect16: Normal Forms 4

Second Normal Form

▪ A relation schema R is in second normal form (2NF) if
no non-prime attribute in R is partially functionally
dependent on any relation schema R key

▪ Example:

Grades ({StID, StName, CourId, Grade },

{StID →StName, StID + CourId →Grade })

K (Grades) = StID + CourId

▪ is not in 2NF, but in 1NF, since

▪ Grade, StName are non-prime attributes:

▪ Grade is not partially (is fully) depended on the key

▪ but StName is partially depended on the key

▪ Recall: non-prime attribute is an attribute that does not
belong to any of the keys

▪ Second normal form relations still exhibits update anomalies

SWEN 304/435 Lect16: Normal Forms 5

Third Normal Form

▪ A relation schema N (R, F) with a set of keys K (N) is
in third normal form (3NF) if for each non-trivial
functional dependency X →A holds in F , either X is
a superkey of N, or A is a prime attribute of N

▪ X is a superkey of N : X is a superset of a key of N

▪ Formally 3NF can be defined by:

(f :X→AF)(AX  X→RF +  (YK (N))(AY))

▪ Relation schemas being in the third but not in Boyce–
Codd normal form still exhibit some update anomalies

▪ Recall: a prime attribute is a relation schema attribute
that belongs to any of the keys

SWEN 304/435 Lect16: Normal Forms 6

Another Definition of the Third Normal Form

▪ According to Codd’s original definition:

A relation schema is in third normal form (3NF) if it is
in 2NF, and no non-prime attribute is transitively
functionally dependent on any relation schema key

▪ A functional dependency X → A in a relation schema N is
a transitive dependency if there is a set Y that is
neither a candidate key nor a subset of any key of N,
and both X →Y and Y →A hold

▪ It can be proven that the two definitions given are
equivalent

SWEN 304/435 Lect16: Normal Forms 7

Third Normal Form – Examples (1)

▪ The relation schema

Lecturer ({LecId, LeName, CourId, CoName },
{LecId→LeName, LecId→CourId, LecId→CoName,
CourId→CoName }),

K (Lecturer) = LecId

▪ It is in 2NF but not in 3NF,

▪ since FD CourId →CoName holds in F, but neither
CourId is a super key nor CoName is a prime
attribute

SWEN 304/435 Lect16: Normal Forms 8

Third Normal Form – Examples (2)

▪ The relation schema

Lecturer ({LecId, LeName, CourId }, {LecId→LeName,
LecId→CourId }), K (Lecturer) = LecId

▪ Is in 3NF,

▪ since all FDs in F have the LHS as a key

▪ The relation schema

N ({A, B, C }, {A→B, B→A, B→C }), K = {A, B },

▪ Is it in 3NF?

▪ Why?

at least

SWEN 304/435 Lect16: Normal Forms 9

Third Normal Form – Examples (3)

▪ Given N ({A, B, C }, {AB→C, C→B }), is N in 3NF?

▪ We first need to determine minimal keys of N

SWEN 304/435 Lect16: Normal Forms 10

Boyce-Codd Normal Form

▪ The Boyce-Codd normal form is the highest NF
that is based on FDs

▪ The relation schema (R, F) is in Boyce-Codd
Normal Form (BCNF), if the left-hand side of
each non-trivial functional dependency in F
contains a relation schema key

▪ Formally

(f : X →AF)(AX  X →R F +)

SWEN 304/435 Lect16: Normal Forms 11

Boyce-Codd Normal Form Examples (1)

▪ Employee={e_no, e_name, salary, child}

with F = {e_no → e_name, e_no → salary}

▪ Employee is not in BCNF wrt F

▪ since

▪ the FD e_no → e_name is not trivial, and

▪ e_no is not a superkey for Employee wrt F :

e_no+ = {e_no, e_name, salary}

SWEN 304/435 Lect16: Normal Forms 12

Boyce-Codd Normal Form Examples (2)

▪ INFO({e_no, e_name, salary}, {e_no → e_name,
e_no → salary})

▪ INFO is in BCNF wrt F

▪ since

▪ Both no trivial FDs e_no → e_name, e_no → salary
have LHS as super key
▪ e_no is a superkey for INFO wrt F :

e_no+ = {e_no, e_name, salary}

▪ What about
▪ INFO({e_no, e_name, salary}, {e_no → e_name, e_name →

salary})?

▪ N ({A, B, C }, {AB →C, C →B}),

▪ Is it in BCNF wrt F?

▪ Why?

SWEN 304/435 Lect16: Normal Forms 13

Normal Form of a Set of Relation Schemas

▪ The normal form of a relation schema set

S = {N1 (R1 , C1),…, Nn (Rn , Cn)}

is determined by the normal form of the relation

schema being in the lowest normal form

▪ Example:

S = {N1 ({A, B }, {A→B }),

N2 ({B, C, D, E }, {BC→D, C→E })}

▪ Due to N2 , S is in 1NF, even though N1 is in BCNF

▪ Note: when considering normal forms, the set of
constraints C is, often, considered as containing only
functional dependencies

SWEN 304/435 Lect16: Normal Forms 14

Normal Form Examples (1)

▪ let R = CZS and = {Z → C, CS → Z }

▪ determine minimal keys

▪ Which normal form is it in?

▪ now take R = ABCD and = {A → B, B → C, CD
→ A, AC → D }

▪ determine minimal keys

▪ Which normal form is it in?

SWEN 304/435 Lect16: Normal Forms 15

Normal Form Examples (2)

▪ For R = CZS and F = {Z → C, CS → Z }

▪ We discover that the minimal keys are ZS and CS

▪ Hence all attributes are prime and R is in 3NF

▪ For R = ABCD and F = {A → B, B → C, CD → A, AC → D }

▪ We discover that the minimal keys are A, BD and CD

▪ Hence again all attributes are prime and R is in 3NF

▪ In both cases we did not have BCNF

SWEN 304/435 Lect16: Normal Forms 16

Summary

▪ Of six normal forms defined in theory, only first
four have significance in the practice

▪ Of these four only three are based on functional
dependencies (2NF, 3NF, and BCNF)

▪ The first, second and (partly) third normal form
suffer from update anomalies

▪ A set of BCNF relation schemas is (practically)
free of update anomalies, and represents a
possible goal of normalization

▪ The fact that a relation schema key functionally
defines all relation schema attributes is crucial for
understanding normal forms

