
Lecturer: Dr Hui Ma

Engineering and Computer Science

Normalization
Algorithms

SWEN304/SWEN435

SWEN304/SWEN435 Lect17: Normalization 1

Normalization

▪ Normalization is used to design a set of relation schemas
that is optimal from the point of view of database
updating

▪ The normalization starts from a universal relation
schema

▪ There are six normal forms, of which three are based on
functional dependencies

▪ Normal forms define to which extent we should
normalize

▪ The Synthesis algorithm and the Decomposition
algorithm represent the formal normalization methods

▪ Readings from the textbook:

▪ Chapter 15 : 15.1-15.5,

▪ Chapter 16 : 16.1 -16.3

SWEN304/SWEN435 Lect17: Normalization 2

Normalization

▪ Normalization is a database design procedure whose
input is (U, F), and the output is

S = {(Ri , Fi)|i = 1,…, n }

▪ Desirable properties of a decomposition S are:

▪ U = (Attribute preservation)

▪ F + = (Dependency preservation)

▪ Lossless join decomposition

n

1i

iR
=

+

=

)(
n

1i

iF

SWEN304/SWEN435 Lect17: Normalization 3

Normalization

▪ Note, for every set

S = {(Ri , Fi)|i = 1,…, n }

of relation schemas, there exists one (hypothetical)

universal relation schema (U, F) such that

U = , and

F =

▪ So, given S, you can infer (U, F)

n

1i

iR
=

n

1i

iF
=

SWEN304/SWEN435 Lect17: Normalization 4

Third Normal Form

▪ A relation schema N (R, F) with a set of keys K (N) is
in third normal form (3NF) if for each non-trivial
functional dependency X →A holds in F , either X is
a superkey of N, or A is a prime attribute of N

▪ X is a superkey of N : X is a superset of a key of N

▪ Formally

(f :X→AF)(AX X→RF + (YK (N))(AY))

▪ Relation schemas being in 3NF but not in BCNF still
exhibit some update anomalies

SWEN304/SWEN435 Lect17: Normalization 5

Lossless 3NF Decomposition

Synthesis Algorithm

Input: (U, F)

Output: S = {(Ri , Ki)|i = 1,…, n } (*Ki is the relation
schema key*)

1. Find a minimal cover G of F

2. Group FDs from G according to the same left-hand side.
For each group of FDs

(X →A1, X →A2,…, X →Ak),

make one relation schema in S

({X, A1, A2,…, Ak }, X)

3. If none of relation schemes in S contain a key of (U, F),
create a new relation scheme in S that will contain only
a key of (U, F)

SWEN304/SWEN435 Lect17: Normalization 6

Properties of Synthesis Algorithm

▪ At least third normal form

▪ Attribute preservation

▪ Functional dependency preservation

▪ Lossless join decomposition

▪ Lossless join property of S is the consequence of a
theorem proving that S represents a non-additive
decomposition if it contains a relation schema that
contains a key of the constructed universal relation
schema

▪ This property is valid for any set of relation schemas

SWEN304/SWEN435 Lect17: Normalization 7

▪ The Boyce-Codd normal form is the highest NF that is
based on FDs

▪ The relation schema (R, F) is in the Boyce-Codd
Normal Form (BCNF), if the left-hand side of each
non trivial functional dependency in F contains a
relation schema key

▪ Formally

(f : X →AF)(AX X →R F +)

▪ A relation in BCNF is free from update anomalies

▪ Ideally, relation database design should try to achieve
BCNF or 3NF for every relation schema

Boyce-Codd Normal Form

SWEN304/SWEN435 Lect17: Normalization 8

BCNF Test

▪ Given R and F on R

▪ Relation schema (R, F) is not in BCNF if there exists a
non-trivial FD X→A in F such that R X +

F

▪ Example:

▪ R = {StudId, CourId, LecId }

▪ F = {StudId + CourId →LecId, LecId →CourId }

▪ LecId →CourId is a non trivial FD,

▪ and LecId is not a relation schema key

SWEN304/SWEN435 Lect17: Normalization 9

Decomposition algorithm:

Input: (U, F)

Output: S = {(Ri, Fi)|i = 1,…, n }

1. Set S := {(U, F)}

2. While there is a relation schema (R, G) in S that is not
in BCNF do

2.1 Choose a functional dependency X →Y in G that
violates BCNF,

2.2 Replace (R, G) with (R -Y, G |R-Y) and (XY, G |XY)

▪ The final result will be a lossless BCNF-decomposition

BCNF Decomposition

▪ Properties:
▪ Boyce-Codd normal form
▪ Attribute preservation
▪ Lossless join decomposition
▪ Some functional dependencies may be lost

▪ The decomposition algorithm is based on a step by
step splitting of relations until desired normal form
is achieved

R

R1 R2

SWEN304/SWEN435 Lect17: Normalization 10

BCNF Decomposition Properties

SWEN304/SWEN435 Lect17: Normalization 11

Projection of a Set of FDs

▪ Given U, F and W U, projection of F onto W is

F |W = {X→A F + |AX W }

▪ When decomposing one relation schema (R, F)
onto two new relation schemas (R1 , F1) and (R2 ,
F2), then

F1 = F |R1 and F2 = F |R2

All the FDs in the closure of F that have both LHS and LHS as subsets of W

SWEN304/SWEN435 Lect17: Normalization 12

A Question

▪ Let min (F |W) denote a minimal cover of F |W

▪ Given F = {A→B, B →C }

▪ Which answer is correct:

a) min (F |AC) = { }

b) min (F |AC) = {A →B }

c) min (F |AC) = {A →C }

SWEN304/SWEN435 Lect17: Normalization 13

Lossless Join Decomposition Property 1

▪ A decomposition D (R) = {R1, R2 } is a lossless join
decomposition of R with respect to F if

R1 R2 →R1 F + R1 R2 →R2 F +

▪ That property leads to a conclusion:

Given R and F = {X→Y,...} set of FDs in R, a
decomposition

R1 = R -Y, F1 = F |R -Y

R2 = XY, F2 = F |XY

is a non-additive (lossless join) decomposition

SWEN304/SWEN435 Lect17: Normalization 14

A Question

▪ Given R = {A, B, C } and F = {B→C }

▪ Is the decomposition D = {R1 , R2 } with

R1 = {A, B } , F1 = { } and

R2 ={B, C }, F2 = {B→C }

lossless?

• Yes,

• because {A, B } {B, C } = {B } and if B→C
belongs to F2 , then B is a key of R2 , i.e.,B→ R2

▪ If D (R) = {R1 , R2 } is a lossless join decomposition of R
with respect to F , and

▪ D (R1) = {R3 , R4 } is a lossless join decomposition of R1

with respect to F1 = F |R1

▪ So is D (R) = {R2 , R3 , R4 } a lossless join
decomposition of R with respect to F

▪ Property 2 says that the decomposition process may be
continued until the desired normal form is achieved and
that the resulting decomposition will be the lossless one

SWEN304/SWEN435 Lect17: Normalization 15

Lossless Join Decomposition Property 2

SWEN304/SWEN435 Lect17: Normalization 16

Finishing Database Design

▪ After the normalization, one has also to define
interrelation constraints (referential integrity
constraints)

SWEN304/SWEN435 Lect17: Normalization 17

Checking FD Satisfaction

▪ When a database schema is in BCNF, all
nontrivial functional dependencies, embedded in
a relation schema, contain a key on their left-
hand side,

▪ Only then, by means of SQL DDL CREATE TABLE
key definition, a DBMS becomes able to check
satisfaction of functional dependencies

▪ Since keys are unique, no FD left-hand side can
have duplicate values, hence no FD violation

SWEN304/SWEN435 Lect17: Normalization 18

BCNF Decomposition: An Example

▪ For a relation N

▪ let R = ABCD

▪ let F = {A → B, B → C, CD → A, AC → D }

▪ Compute B+ = BC, so B is not a superkey

▪ Decomposition along B → C gives

R1 = ABD and R2 = BC

▪ In addition we get F1 = {A → B, A → D, BD → A} and F2 = {B → C }

SWEN304/SWEN435 Lect17: Normalization 19

BCNF Decomposition: An Example
▪ Check R1 and R2 to see if they are in BCNF

▪ R2 is in BCNF because (B)+= BC= R2

▪ Compute A+ = ABD and (BD)+= ABD. So, R1 is in BCNF

▪ Hence, obtained lossless BCNF-decomposition

▪ However, CD → A ∈ F +, but CD → A (F1 ∪ F2)
+

▪ In this lossless BCNF-decomposition we lost dependencies

SWEN304/SWEN435 Lect17: Normalization 20

Summary

▪ The Synthesis algorithm is based on finding a minimal
cover of the given FD set

▪ It guaranties third normal form, lossless join
decomposition, attribute and FD preservation

▪ The Decomposition algorithm is based on a gradual
splitting of non-BCNF relation schemas onto two new
relation schemas

▪ Splitting is made using functional dependencies that
violate BCNF

▪ It guaranties a BCNF lossless join decomposition, and
attribute preservation, but preservation of FDs is not
guaranteed

SWEN304/SWEN435 Lect17: Normalization 21

Summary

▪ Normalization results in a set of relation schema

▪ That design is suitable for efficient database
update

▪ But, it can slow down execution of queries

▪ Sometimes, it is advisable to undertake
controlled denormalization

