
Lecturer: Dr Hui Ma

Engineering and Computer Science

Java DataBase Connectivity

SWEN304/SWEN435

Trimester 1, 2024

Plan for Java DataBase Connectivity (JDBC)

▪ Motivation
▪ Architecture
▪ JDBC Classes and Interfaces

▪ JDBC Driver Management
▪ Controlling transaction behavior

▪ Executing SQL statements
▪ Obtaining result data
▪ Matching data types
▪ Exceptions
▪ Closing a connection

▪ Further Reading: The JavaTM Tutorial:

http://ecs.victoria.ac.nz/technical/java/
tutorial/index.html

SWEN304/SWEN435 Lect18: JDBC 1

Motivation for Using JDBC

▪ In practice, databases are not only accessed by
human users through the user interface, but also by
application programs

▪ Application programs are written in a general purpose
programming language (GPPL)

▪ for example, Java, C/C++, Python, …

▪ When developing applications, software engineers use
SQL for data management inside their application
program

▪ The application program is written in a GPPL with SQL
statement embedded into it

▪ therefore, the GPPL is also called the ‘host’ language

SWEN304/SWEN435 Lect18: JDBC 2

The Java Database Connectivity (JDBC) API

▪ Java Database Connectivity (JDBC) is the standard
application program interface (API) for accessing
databases from a Java program

▪ it allows us to embed SQL statements into Java code

▪ JDBC is supported by all relevant DBMS, including all
major commercial and open source DBMS

▪ Interactions of an application program with a specific DBMS
are accomplished through a DBMS-specific JDBC driver

▪ Application programs using JDBC are independent of
the particular DBMS that is used

▪ Independence holds on source code & executable code level

▪ Independence is a huge advantage when developing
applications for multiple DMBSs

▪ Independence is achieved by an extra level of indirection

SWEN304/SWEN435 Lect18: JDBC 3

Accessing Databases from Application Programs

Application

Program
Driver

Manager
JDBC

Call

(SQL)

Driver
SQL

translated

Into

DBMS

specific

commands

Oracle PostgreSQL
SQL

Server MySQL …

Driver

(MySQL)

Driver

(Oracle)

Driver

(SQL Server)

…

Driver

Loading

Select a

Driver

Driver

(PostgreSQL)

SWEN304/SWEN435 Lect18: JDBC 4

JDBC Architecture (1)

▪ When using JDBC the following play a role :

▪ Application programs

▪ A database system (DBMS plus databases)

▪ A DBMS-specific JDBC driver

▪ A driver manager

SWEN304/SWEN435 Lect18: JDBC 5

JDBC Architecture (2)

▪ Application programs …

▪ Dynamically load the JDBC drivers needed,

▪ Initiate a connection with a database,

▪ Set transaction boundaries (BEGIN,…, {COMMIT |
ROLLBACK}),

▪ Acquire locks,

▪ Submit SQL statements,

▪ Receive data,

▪ Process data,

▪ Process error messages,

▪ Decide whether to commit or roll-back a transaction,

▪ Disconnect from the database to terminate a session

SWEN304/SWEN435 Lect18: JDBC 6

JDBC Architecture (3)

▪ The DBMS …

▪ Processes data manipulation commands,

▪ Returns results to the application program

▪ The JDBC driver …

▪ Establishes connection with a database,

▪ Submits data manipulation requests,

▪ Accepts results returned by the DBMS,

▪ Translates DBMS specific data types into Java data types,

▪ Translates error messages

▪ The driver manager …

▪ Loads and supervises available JDBC drivers for various DBMS

▪ Calls JDBC drivers to connect to a database

SWEN304/SWEN435 Lect18: JDBC 7

JDBC Classes

▪ JDBC is a collection of Java classes and interfaces

▪ All these are put together in the java.sql package

▪ It contains methods for:

▪ Connecting to a remote database,

▪ Executing SQL statements,

▪ Iterating over a set of tuples from a SQL statement,

▪ Transaction management,

▪ Exception handling

SWEN304/SWEN435 Lect18: JDBC 8

JDBC DriverManager class

▪ JDBC provides the DriverManager class

▪ Among others, it defines methods to enable dynamic
addition and deletion of JDBC drivers :

▪ registerDriver()

▪ deregisterDriver()

▪ The first step in connecting to a database (managed
by some DBMS) is to load a suitable JDBC driver for
that particular DBMS

▪ Any current JDBC drivers that are found in the class
path are automatically loaded

SWEN304/SWEN435 Lect18: JDBC 9

Registering a JDBC Driver

▪ However, drivers prior to JDBC 4.0 must be loaded
manually with the method Class.forName

public static native Class.forName (String name)

throws ClassNotFoundException

▪ This creates a Driver object for the respective JDBC driver

▪ Example: to load a JDBC driver for PostgreSQL use

▪ Class.forName("org.postgresql.Driver");

▪ If you are unsure which JDBC drivers will be available,
load them manually

SWEN304/SWEN435 Lect18: JDBC 10

Establishing a Connection

▪ To connect to a database in a DBMS, the
getConnection method of the DriverManager

object is called
▪ Connection con =

DriverManager.getConnection(url, [userId],

[password]);

▪ This method requires a URL to the database

▪ In the application program, the method call starts a
session with the database by creating a Connection

object

SWEN304/SWEN435 Lect18: JDBC 11

Specifying the URL for the Connection

▪ The URL url to the database is of the form
jdbc:[drivertype]:[database]

▪ Herein,

▪jdbc is a constant,

▪[drivertype] is the type of the database we want to
connect (e.g. postrgresql), and

▪[database] is the address of the database in form

//hostname[:portnumber]/database_name

▪ Example:
jdbc:postgresql://db.ecs.vuw.ac.nz/007_jdbc

SWEN304/SWEN435 Lect18: JDBC 12

Connection Interface

▪ The interface java.sql.Connection has a number

of classes and methods that are used:

▪ To control transactional behavior of a Connection

object,

▪ To create and execute SQL statements,

▪ To iterate over the result returned by a DBMS, and

▪ To finish interaction with a database by closing the
connection

▪ After acquiring a connection (with the name say con)

and before it is closed, the same connection can be
used for executing several transactions

SWEN304/SWEN435 Lect18: JDBC 13

Controlling Transaction Behavior-Start

▪ By default, a Connection automatically commits
changes after executing each SQL statement

▪ The method

public abstract void setAutoCommit(

boolean autoCommit) throws SQLException

is applied onto a Connection object

▪ To designate the start of a transaction (BEGIN

point), we assign a value false to autoCommit

con.setAutoCommit(false);

SWEN304/SWEN435 Lect18: JDBC 14

Controlling Transaction Behavior-End

▪ A transaction is terminated using:

▪ Either

public abstract void commit() throws

SQLException

▪ or
public abstract void rollback() throws

SQLException

▪ And (after any of them)

con.setAutoCommit(true)

on the Connection object

SWEN304/SWEN435 Lect18: JDBC 15

What Next?

▪ Executing SQL statements

▪ Statement object

▪ PreparedStatement object

▪ Obtaining result data

▪ Matching data types

▪ Exceptions

▪ Closing a connection

SWEN304/SWEN435 Lect18: JDBC 16

Executing SQL Statements

▪ JDBC supports three different ways of executing SQL
statements:

▪ Statement,

▪ PreparedStatement, and

▪ CollableStatement

SWEN304/SWEN435 Lect18: JDBC 17

Statement Class and It’s Subclasses

▪ The Statement class is the base class of the three

classes used to submit queries to a DBMS

▪ Its objects are used to send such SQL queries to a
DBMS that are executed with no repetition within a
transaction and that have no parameters

▪ PreparedStatement objects are used for SQL

statements with parameters or for those that are
executed multiple times (in a loop)

▪ SQL statements of PreparedStatement objects may be
precompiled yielding better performance

▪ CollableStatement objects are used with stored

procedures and are out of the scope of the course
SWEN304/SWEN435 Lect18: JDBC 18

Submitting a SQL Query to a DBMS

▪ The following steps should be performed in order to
submit a SQL statement to a DBMS either using a
Statement (S) or PreparedStatement (PS) object:

1. Define a SQL query as a string

2. Create a S or PS object

If the SQL statement is one of CREATE, INSERT,
DELETE, UPDATE, or SET type:

3. Apply executeUpdate() method onto the S or PS
object

Else (the SQL statement is of the SELECT type):

3. Create a ResultSet object

4. Feed into the ResultSet object the return value
of applying executeQuery() method onto the S
or PS object

SWEN304/SWEN435 Lect18: JDBC 19

Statement Objects With executeUpdate

String insert="INSERT INTO Grades " +

"VALUES (007007,’C305’,’A+’)";

Statement stmt=con.createStatement();

int return_value =

stmt.exectuteUpdate(insert);

▪ For INSERT, DELETE, and UPDATE queries, the

return value will be the number of tuples affected

▪ For CREATE or SET, the return value should be 0

SWEN304/SWEN435 Lect18: JDBC 20

ResultSet Object

▪ The executeQuery() method returns an object of
the type set (or superset)

▪ This set object should be assigned to an object of the
ResultSet class

▪ The ResultSet class has the next() method that
allows traversing the set in a tuple at a time fashion

▪ Initially, the ResultSet object is positioned before the
first tuple of the result

▪ The method next() returns true if there is a next
tuple in the result, otherwise false

▪ After executing next(), the ResultSet object
contains a pointer to the current tuple

SWEN304/SWEN435 Lect18: JDBC 21

Statement Objects With executeQuery

String select="SELECT * FROM Grades"

+ "WHERE StudentId=007007";

Statement stmt =

con.createStatement();

ResultSet rs =

stmt.exectuteQuery(select);

while (rs.next()){

// extracting data from rs tuples

// data processing

}

SWEN304/SWEN435 Lect18: JDBC 22

Extracting Data from the Result

▪ To match Java and database data types, JDBC
specifies mappings and provides accessor methods in
the ResultSet class

int j_studId;

String j_courseId;

String j_grade;

while (rs.next()){

j_studId=rs.getInt("StudentId");

j_courseId=rs.getString("CourseId");

j_grade=rs.getString(3)

// 3 is the column number in the result

}

SWEN304/SWEN435 Lect18: JDBC 23

PreparedStatement With executeUpdate

String insert="INSERT INTO Grades VALUES (?,?,?)";

PreparedStatement prstmt =
con.prepareStatement(insert);

boolean end=false;

while(!end){

// suppose j_studId, j_courseId, j_grade, and end
//are dynamically initialized to desired values

prstmt.setInt(1, j_studId);

prstmt.setString(2, j_courseId);

prstmt.setString(3, j_grade);

int return_value = prstmt.exectuteUpdate();

…

}

SWEN304/SWEN435 Lect18: JDBC 24

PreparedStatement with executeQuery

String select= "SELECT * FROM Grades

WHERE StudentId = ?";

PreparedStatement prstmt =

con.prepareStatement(select);

// suppose j_studId is initialized on the

// desired value

prstmt.setInt(1, j_studId);

ResultSet rs =

prstmt.exectuteQuery();

while(rs.next()){

}

SWEN304/SWEN435 Lect18: JDBC 25

Closing a Connection

▪ Before exiting from an application program all
connections acquired should be closed by
applying

public abstract void close() throws

SQLException

method on each of them

SWEN304/SWEN435 Lect18: JDBC 26

Exceptions

▪ Most of the methods in java.sql can throw an
exception of the type SQLException if an error
occurs

▪ In addition to inherited getMessage()

method, SQLException class has two additional
methods for providing error information:

▪ public String getSQLState() that returns
an SQL state identifier according to SQL:1999
standard, and

▪ public int getErrorCode() that retrieves
a vendor specific error code

▪ Each JDBC method that throws an exception has
to be placed inside a try block followed by a
catch block
SWEN304/SWEN435 Lect18: JDBC 27

Code to See Exceptions

try{

/* Code that could generate an

exception goes here. If an

exception is generated, the

catch block below will print out

information about it*/

}

catch (SQLException ex){

System.println(ex.getMessage());

System.println(ex.getSQLState());

System.println(ex.getErrorCode());

}

SWEN304/SWEN435 Lect18: JDBC 28

Summary

▪ JDBC Transactions are executed by:

▪ Acquiring a Driver,

▪ Constructing a connection object,

▪ Establishing transaction boundaries

▪ Submitting SQL statements,

▪ Retrieving results,

▪ Processing either results returned or exception errors,

▪ Committing or roll-backing transactions, and

▪ Disconnecting from databases to terminate interaction

▪ Statement objects - SQL statements have no
parameters,

▪ PreparedStatement objects - SQL statements have
parameters

SWEN304/SWEN435 Lect18: JDBC 29

