
Lecturer: Dr Hui Ma

Engineering and Computer Science

Transaction Processing

SWEN304/SWEN435

Slides by: Pavle Morgan & Hui Ma

Outline

▪ Introduction to transaction processing

▪ How transactions influence database consistency

▪ Lost update problem

▪ Dirty read problem

▪ Unrepeatable read problem

▪ Commit

▪ Transaction state transition diagram

▪ Desirable Properties of Transactions: ACID

▪ Readings from the textbook:

▪ Chapter 21

SWEN304/SWEN435 Lect19: Transaction 1

Introduction to Transaction Processing (1)

▪ The concept of transaction is used to describe
logical units of a database processing

▪ Transaction processing systems are systems
with large databases and hundreds of concurrent
users executing database transactions

▪ Examples of these systems are:

▪ Airline reservations,

▪ Banking,

▪ Credit card processing,

▪ Supermarket checkout, and

▪ E-commerce

SWEN304/SWEN435 Lect19: Transaction 2

Chapter 17-3

Introduction to Transaction Processing (2)

▪ Single-User System: At most one user at a time can
use the system

▪ Multiuser System: Many users can access the system
concurrently because of multiprogramming

▪ Multiprogramming operating systems execute some
commands of one process, then suspend this process
and execute some commands of another process

▪ Majority of database systems are of a multiuser type

SWEN304/SWEN435 Lect19: Transaction

Chapter 17-4

Introduction to Transaction Processing (3)

▪ Concurrency

▪ Interleaved processing: concurrent execution of
processes is interleaved in a single CPU

▪ Parallel processing: processes are concurrently
executed in multiple CPUs

SWEN304/SWEN435 Lect19: Transaction

process 1

Interleaved and Parallel Processes

t1 t2
t3 t4

t5

process 1

process 2 process 2

process 1

t2 - t1+ t4 - t3

process 2

t

t

t3 - t2+ t5 - t4

Inter-leaved

Parallel

SWEN304/SWEN435 Lect19: Transaction 5

Introduction to Transaction Processing (4)

▪ A Transaction: logical unit of database processing
that includes one or more access operations (read -
retrieval, write - insert or update, delete)

▪ A transaction (set of operations) may be stand-
alone specified in a high level language like SQL
submitted interactively, or may be embedded within
a program

▪ Transaction boundaries: Begin and End
transaction

▪ An application program may contain several
transactions separated by the Begin and End
transaction boundaries

SWEN304/SWEN435 Lect19: Transaction 6

Introduction to Transaction Processing (5)

SIMPLE MODEL OF A DATABASE (for discussing
transactions):

▪ A database - collection of named data items

▪ Granularity of data - a field, a record , or a whole
disk block (Concepts are independent of granularity)

▪ Basic operations are read and write

▪ read_item(X): Reads a database item named X
into a program variable. To simplify our notation,
we assume that the program variable is also
named X.

▪ write_item(X): Writes the value of program
variable X into the database item named X.

SWEN304/SWEN435 Lect19: Transaction 7

Introduction to Transaction Processing (6)

▪ In multiuser transaction processing systems, users
execute database transactions concurrently

▪ Most often, concurrent means interleaved

▪ Users can attempt to modify the same database
items at the same time, and that is potential source
of database inconsistency

▪ Checking database integrity constraints is not
enough to protect a database from threats induced
by its concurrent use

SWEN304/SWEN435 Lect19: Transaction 8

Sources of Database Inconsistency

▪ Uncontrolled execution of database
transactions in a multiuser environment can
lead to database inconsistency:

▪ lost update,

▪ dirty read, and

▪ unrepeatable read

SWEN304/SWEN435 Lect19: Transaction 9

Lost Update Problem

T1
T2

read_item (X)

X = X – N

write_item (X)

read_item (X)

X = X + M

write_item (X)

time

▪ After termination of T2, X = X

+ M.

▪ T1's update of X has been

lost because T2 has

overwritten X

▪ Generally, lost update

problem is characterized

by:

▪ T2 reads X,

▪ T1 writes X, and

▪ T2 writes X

Note: In this example and all that follow, the pair of commands

(read_item(X), write_item(X)) is a replacements for an SQL UPDATE

statement

SWEN304/SWEN435 Lect19: Transaction 10

Dirty Read Problem

T1
T2

read_item (X)

X = X – N

write_item (X)

read_item (Y)

T1 fails

read_item (X)

read_item (Z)

X = X + Z

write_item (X)

time

▪ Generally, dirty read

problem is characterized

by:

• T1 writes X,

• T2 reads X, and

• T1 fails

▪ Since T1 failed, DBMS is

going to undo the changes

it made against the

database

▪ T2 has already read item X

= X - N value, and that

value is going to be altered

by DBMS back to X
SWEN304/SWEN435 Lect19: Transaction 11

Unrepeatable Read Problem

T1
T2

read_item (X)

read_item (X)

read_item (X)

X = X + M

write_item (X)

time

▪ Transaction T1 has got two

different values of X in two

subsequent reads, because

T2 has changed it in the

meantime

▪ Generally, unrepeatable read

problem is characterized by:

• T1 reads X,

• T2 writes X, and

• T1 reads X

SWEN304/SWEN435 Lect19: Transaction 12

A Question for You

▪ What is the difference between:

▪ Dirty read and

▪ Unrepeatable read

problem?

▪ The difference is:

▪ The dirty read is a consequence of reading updates
made by a transaction before it has successfully
finished (and has even failed later).

▪ The unrepeatable read is a consequence of allowing
a transaction to read and alter data that the other
one is reading

SWEN304/SWEN435 Lect19: Transaction 13

Prevention of Concurrency Anomalies

▪ Lost update, dirty read and unrepeatable read are
called concurrency anomalies

▪ The concurrency control part of a DBMS has the
task to prevent these problems

▪ DBMS is responsible to ensure that

▪ either all operations of a transaction are successfully
executed and their effect is permanently stored in the
database,

▪ or it happens as if the transaction were even not
started

▪ The effect of a partially executed transaction has to
be undone

SWEN304/SWEN435 Lect19: Transaction 14

Types of Failures

▪ A transaction can be partially executed due to:

▪ A computer failure

▪ E.g. hardware, software, network

▪ A transaction error: some operation in the transaction

may cause it to fail

▪ E.g. integer overflow, division by zero, user interrupt

▪ An exception condition: certain conditions necessitate

cancellation of the transaction

▪ E.g. data not found, condition not satisfied

▪ A concurrency control enforcement

▪ E.g. dead lock, timeout,…

▪ An abort command in transaction program

SWEN304/SWEN435 Lect19: Transaction 15

Transaction and System Concepts (1)

▪ A transaction is an atomic unit of work that is
either completed in its entirety or not done at all
▪ For recovery purposes, the system needs to keep

track of when the transaction starts, terminates, and
commits or aborts

▪ Transaction states:
▪ Active state
▪ Partially committed state
▪ Committed state
▪ Failed state
▪ Terminated State

SWEN304/SWEN435 Lect19: Transaction 16

Transaction State Transition Diagram

Failed

abort

begin

transaction
Active

read,

write

Partially

committed

end

transaction

Committed

commit

Terminated

Program

command

Transaction

state

Here, the transaction manager

checks whether changes can be

stored in the database

SWEN304/SWEN435 Lect19: Transaction 17

Transaction and System Concepts (2)

▪ Recovery manager keeps track of the following
operations:
▪ begin_transaction: marks the beginning of

transaction execution

▪ read or write: specify read or write operations on
the database items that are executed as part of a
transaction

▪ end_transaction: specifies that read and write
transaction operations have ended and marks the end
limit of transaction execution
▪ At this point it may be necessary to check whether the

changes introduced by the transaction can be
permanently applied to the database or whether the
transaction has to be aborted because it violates
concurrency control or for some other reason

SWEN304/SWEN435 Lect19: Transaction 18

Transaction and System Concepts (3)

▪ Recovery manager keeps track of the following
operations (cont):

▪ commit_transaction: signals a successful end of the
transaction so that any changes (updates) executed by
the transaction can be safely committed to the
database and will not be undone

▪ rollback (or abort): signals that the transaction has
ended unsuccessfully, so that any changes or effects
that the transaction may have applied to the database
must be undone

SWEN304/SWEN435 Lect19: Transaction 19

Commit and Abort

▪ A transaction reaches its commit point when all of
its operations that access the database have been
executed successfully and the effect of all
transaction operations on the database have been
stored somewhere permanently

▪ Beyond the commit point, the effect of a
transaction is assumed to be permanently
recorded in the database

▪ If a transaction does not reach its commit point it
has to be rolled back (aborted)

SWEN304/SWEN435 Lect19: Transaction 20

Transaction and System Concepts (4)

▪ Recovery techniques use the following
operators:

▪ undo: similar to rollback except that it applies to
a single operation rather than to a whole
transaction.

▪ redo: specifies that certain transaction operations
must be redone to ensure that all the operations
of a committed transaction have been applied
successfully to the database.

SWEN304/SWEN435 21Lect19: Transaction

Desirable Properties of Transactions (1)

ACID properties:

▪ Atomicity: A transaction is an atomic unit of
processing; it is either performed in its entirety or
not performed at all

▪ Consistency preservation: A correct execution of
the transaction must take the database from one
consistent state to another

SWEN304/SWEN435 Lect19: Transaction 22

Desirable Properties of Transactions (2)

ACID properties (cont.):

▪ Isolation: A transaction should not make its
updates visible to other transactions until it is
committed;

▪ this property, when enforced strictly, solves the
temporary update problem and makes cascading
rollbacks of transactions unnecessary

▪ Durability or permanency: Once a transaction
changes the database and the changes are
committed, these changes must never be lost
because of subsequent failure

SWEN304/SWEN435 Lect19: Transaction 23

Summary

▪ Executing transaction in an interleaved way may
bring a database in an inconsistent state

▪ Transaction anomalies are:

▪ Lost update,

▪ Dirty read, and

▪ Unrepeatable read

▪ A DBMS is responsible to ensure that either all
operations of a transaction are successfully
executed, or it is rolled back

▪ When a transaction reaches its commit point,
everything is safely and permanently stored
somewhere

SWEN304/SWEN435 Lect19: Transaction 24

