
Lecturer: Dr Hui Ma

Engineering and Computer Science

Database Concurrency Control

SWEN304/SWEN435

Slides by: Pavle Morgan & Hui Ma

Outline

▪ Transaction schedules

▪ Basic locks and basic locking rules

▪ Lock conversion

▪ Lost update and locking

▪ Protocols to insure isolation property of concurrent
transactions

▪ Dead lock and dead lock prevention protocols

▪ Starvation

▪ Phantom record

▪ Readings from the textbook:

▪ Chapter 21: Section 21.5,

▪ Chapter 22 : Sections 22.1, 22.2, and 22.5

▪ PostgreSQL Manulas

SWEN304/SWEN435 Lect20: Concurrency Control 1

Database Concurrency Control

▪ Purpose of Concurrency Control

▪ To enforce Isolation (through mutual exclusion)
among conflicting transactions

▪ To preserve database consistency through
consistency preserving execution of transactions

▪ To resolve read-write and write-write conflicts

▪ Example: In concurrent execution environment if T1
conflicts with T2 over a data item A, then the existing
concurrency control decides if T1 or T2 should get A
and if the other transaction is rolled-back or waits

SWEN304/SWEN435 Lect20: Concurrency Control 2

Transaction Schedules

▪ Transaction schedule or history: When transactions
are executing concurrently in an interleaved fashion, the
order of execution of operations from the various
transactions forms what is known as a transaction
schedule (or history)

▪ A schedule (or history) S of n transactions T1, T2, ..., Tn

is an ordering of the operations of the transactions
subject to the constraint that, for each transaction Ti that
participates in S, the operations of Ti in S must appear in
the same order in which they occur in Ti

▪ Note, however, that operations from other transactions Tj
can be interleaved with the operations of Ti in S

SWEN304/SWEN435 Lect20: Concurrency Control 3

Transaction Schedules based on Serializability

▪ Serial schedule: A schedule S is serial if, for every
transaction T participating in the schedule, all the
operations of T are executed consecutively in the
schedule. Otherwise, the schedule is called nonserial
schedule

▪ Serializable schedule: A schedule S is serializable if
it is equivalent to some serial schedule of the same n
transactions

▪ Result equivalent: Two schedules are called result
equivalent if they produce the same final state of the
database

SWEN304/SWEN435 Lect20: Concurrency Control 4

Schedules based on Serializability (3)

▪ Being serializable is not the same as being serial

▪ Being serializable implies that the schedule is a correct
schedule

▪ It will leave the database in a consistent state

▪ The interleaving is appropriate and will result in a
state as if the transactions were serially executed

▪ will achieve efficiency due to concurrent execution

SWEN304/SWEN435 Lect20: Concurrency Control 5

Transaction Schedules based on Serializability

Practical approach:

▪ Come up with methods (protocols) to ensure
serializability

▪ It is not possible to determine when a schedule begins
and when it ends

▪ Hence, we reduce the problem of checking the whole
schedule, to checking only a committed project of the
schedule (i.e. operations from only the committed
transactions.)

▪ Current approach used in most DBMSs:

▪ Use of locks with two-phase locking

Lect20: Concurrency ControlSWEN304/SWEN435 6

Locking

▪ Locking is the most frequent technique used to control
concurrent execution of database transactions

▪ Operating systems provide a binary locking system
(lock and unlock) that is too restrictive for database
transactions

▪ That is why DBMS contains its own lock manager

▪ A lock_value(X) is variable associated with (each)
database data item X

▪ The lock_value(X) describes the status of the data
item X, by telling which operations can be applied to X

SWEN304/SWEN435 Lect20: Concurrency Control 7

Kinds of Locks

▪ Generally, the lock manager of a DBMS offers two kinds
of locks:

▪ shared (read) lock

▪ exclusive (write) lock

▪ If a transaction T issues a read_lock(X) command, it
will be added to the list of transactions that share lock
on item X, unless there is a transaction already holding
write lock on X

▪ If a transaction T issues a write_lock(X) command, it
will be granted an exclusive lock on X, unless another
transaction is already holding lock on X

▪ Accordingly,

lock_value  {read_lock, write_lock, unlocked }

SWEN304/SWEN435 Lect20: Concurrency Control 8

Basic Locking Rules

▪ The basic locking rules are:

▪ T must issue a read_lock(X) or write_ lock(X)
command before any read_item(X) operation

▪ T must issue a write_lock(X) command before any
write_item(X) operation

▪ T must issue an unlock(X) command when all
read_item(X) or write_item(X) operations are
completed

▪ Some DBMS lock managers perform automatic locking
by granting an appropriate database item lock to a
transaction when it attempts to read or write an item
into database

▪ So, an item lock request can be either explicit, or implicit

SWEN304/SWEN435 Lect20: Concurrency Control 9

Lock Conversion

▪ A transaction T that already holds a lock on item X
can convert it to another state:

▪ T can upgrade a read_lock(X) to a write_lock(X)
if it is the only one that holds a lock on the item X
(otherwise, T has to wait)

▪ T can always downgrade a write_lock(X) to a
read_lock(X)

SWEN304/SWEN435 Lect20: Concurrency Control 10

Lost Update Problem and Locking

T1
T2

read_lock(X)

read_item (X)

unlock(X)

write_lock(X)

X = X – N

write_item (X)

unlock(X)

write_lock(X)

read_item X

X = X + M

write_item(X)

unlock(X)

time

• The problem is that T1

releases lock on X too

early, allowing T2 to start

updating X

• We need a protocol that

will guarantee database

consistency

SWEN304/SWEN435 Lect20: Concurrency Control 11

1000

N= 200

1000

M= 2000

3000

800

2-Phase Locking Techniques: The algorithm

▪ Two Phases

▪ (a) Locking (Growing) Phase: A transaction applies
locks (read or write) on desired data items one at a time.

▪ (b) Unlocking (Shrinking) Phase: A transaction unlocks
its locked data items one at a time.

• Requirement: For a transaction these two phases must be
mutually exclusively, that is, during locking phase unlocking
phase must not start and during unlocking phase locking
phase must not begin.

SWEN304/SWEN435 Lect20: Concurrency Control 12

Strict 2-Phase Locking

▪ Protocol:

▪ All lock operations of a transaction T must precede
the first unlock operation

▪ A transaction T does not release any of exclusive
locks until after it commits or aborts

▪ Comments:

▪ No other transaction can read or write an item X that
is written by T unless T has committed

▪ The strict 2-phase locking protocol is safe for all
transaction anomalies mentioned so far

▪ It is also called read committed protocol, because
transactions are allowed to read only committed
database items

SWEN304/SWEN435 Lect20: Concurrency Control 13

Undesirable Effects of Locking

▪ 2-phase locking can introduce some undesirable
effects:

▪ waits,

▪ deadlocks,

▪ Starvation

▪ Waits relate to the fact that a transaction wanting to
acquire a lock on a database item X has to wait if
another transaction has already acquired an exclusive
lock on X

SWEN304/SWEN435 Lect20: Concurrency Control 14

Deadlock

▪ Deadlock is also called deadly embrace

▪ Typical sequence of operations is given in the
following diagram

T1
T2

write_lock(X)

write_lock(Y)

//has to wait

write_lock(Y)

write_lock(X)

//has to wait

time

• T1 acquired

exclusive lock on X

• T2 acquired

exclusive lock on Y

• No one can finish,

because both are in

the waiting state

SWEN304/SWEN435 Lect20: Concurrency Control 15

Deadlock

▪ Deadlock occurs when:

▪ Each transaction Ti in a set of two or more
transactions T = {T1, T2, …, Tn } is waiting for
some item X that is locked by some other
transaction Tj

▪ In other words:

▪ A number of transactions (greater than one)
hold lock on one item and wait to acquire
another

▪ None of the waiting transactions can acquire
locks on all necessary items

SWEN304/SWEN435 Lect20: Concurrency Control 16

Deadlock Examples
a)

▪ T1 has locked X and waits to lock Y

▪ T2 has locked Y and waits to lock Z

▪ T3 has locked Z and waits to lock X

b)

▪ BothT1 and T2 have acquired sharable locks on X and
wait to lock X exclusively

▪ A dead-lock may be represented using a cyclic wait-for
graph

T1 waits for T2

T1 T2

T2 waits for T1

SWEN304/SWEN435 Lect20: Concurrency Control 17

Deadlock Prevention Techniques (1)

▪ We distinguish between deadlock prevention and
deadlock detection techniques

▪ Deadlock prevention techniques:

▪ Conservative 2-phase lock protocol: lock all items in
advance, if any of them cannot be obtained, none of the
item are locked; try again later

▪ Timestamp techniques:

▪ Wait–Die protocol: if TS(Ti) < TS(Tj) (Ti is older than Tj) then
Ti is allowed to wait. Otherwise (Ti is younger than Tj) abort Ti

(dies) and restart it later with the same timestamp

▪ Wound–Wait protocol: if TS(Ti) < TS(Tj), (Ti is older than Tj)
then abort Tj (Ti wounds Tj) and restart it later with the same
timestamp. Otherwise (Ti is younger than Tj) Ti is allowed to
wait

SWEN304/SWEN435 Lect20: Concurrency Control 18

Deadlock Prevention Techniques (2)

▪ No Waiting (NW) protocol: if unable to get a lock,
immediately abort and restart again after a certain time

▪ Cautious Waiting (CW) protocol: if Tj is not blocked,
then Ti is blocked and allowed to wait; otherwise abort Ti

SWEN304/SWEN435 Lect20: Concurrency Control 19

Conservative 2-Phase Locking Protocol

▪ Conservative 2-Phase Locking Protocol:

▪ A transaction has to lock all items it will access before it
begins to execute

▪ If it cannot acquire any of its locks, it releases all items,
aborts, and tries again,

▪ Comments:

▪ Deadlock can't occur because no hold-and-wait

▪ Once it starts, a transaction can only release its locks

▪ Problems:

▪ What if a transaction cannot predetermine all items it is
going to use? (e.g. a sequence of interactive SQL
statements comprising one database transaction)

▪ What if a database item that is already locked by
another transaction will be released very soon? (i.e. the
transaction is aborted in vane)

SWEN304/SWEN435 Lect20: Concurrency Control 20

Deadlock Detection Schemes

▪ Deadlock prevention is justified if transactions are
long and use many items, or transaction load is very
heavy

▪ In many practical situations it is advantages not to do
deadlock prevention but to detect dead locks and
then abort at least one of the transactions involved

▪ Deadlock detection schemes are:

▪ Deadlock detection using wait-for graph

▪ Timeouts protocol

SWEN304/SWEN435 Lect20: Concurrency Control 21

Deadlock Detection Protocols

▪ Deadlock detection using a wait-for graph:

▪ Construct a wait-for graph where each transaction has its
node

▪ If Ti waits on Tj , construct a directed edge from Ti to Tj

▪ If there is a cycle detected, select a `victim’ and abort it

▪ Victim selecting algorithm should select and abort
transactions that made the least number of updates

▪ Timeouts protocol:

▪ If a transaction waits longer than a specified amount of
time, it gets aborted

▪ Here, deadlock is only supposed, not proved

SWEN304/SWEN435 Lect20: Concurrency Control 22

Starvation

▪ Starvation occurs when a transaction can not make
any progress for an indefinite period of time, while other
transactions proceed

▪ can occur when waiting protocol for locked items is
unfair (used stacks instead of queues)

▪ In a deadlock resolution it is possible that the same
transaction may consistently be selected as victim and
rolled-back

▪ This limitation is inherent in all priority based
scheduling mechanisms

▪ Wound-Wait and Wait-Die schemes can avoid starvation,
because the aborted transactions restart with the same
original timestamp

SWEN304/SWEN435 Lect20: Concurrency Control 23

Granularity of Items

▪ Until now, we used the term `data item’ without
specifying its exact meaning

▪ In the context of the concurrency control, a data item
can be:

▪ A field of a database record,

▪ A database record,

▪ A disk block,

▪ A whole file,

▪ A whole database

▪ The coarser data item granularity is, the more
contention between transactions will occur, and less
productive the DBMS will be (more waits or aborts)

SWEN304/SWEN435 Lect20: Concurrency Control 24

Granularity of Items (continued)

▪ The finer data granularity, the higher locking overhead
of the DBMS lock manager (due to many locks and
unlocks)

▪ The best item size depends on the type of a transaction:

▪ If a transaction accesses a small number of records,
than

data item = record

▪ If a transaction accesses a large number of records in
the same file, then

data item = file

▪ Some DBMS automatically change granularity level
with regard to the number of records a transaction is
accessing (attempting to lock)

SWEN304/SWEN435 Lect20: Concurrency Control 25

Phantom Record

▪ A transaction locks database items that satisfy certain
selection condition and updates them

▪ During that update, another transaction inserts a new
item that satisfies the same selection condition

▪ After the update, but inside the same transaction, we
suddenly discover the existence of a database item that
has not been updated although it should have been
(since it satisfies the selection condition)

▪ This database item, called a “phantom record”, appeared
because it did not exist when locking has been done

SWEN304/SWEN435 Lect20: Concurrency Control 26

Summary

▪ Basic locks:

▪ Shareable,

▪ Exclusive

▪ To avoid all update anomalies:

▪ Lost Update,

▪ Unrepeatable Read, and

▪ Dirty Read

locks should be released only just after the COMMIT
point

▪ Two phase locking protocol may introduce:

▪ Waits,

▪ Deadlocks,

▪ Starvation
SWEN304/SWEN435 Lect20: Concurrency Control 27

Summary (continued)

▪ There are many deadlock prevention schemes, but no one
is ideal

▪ In the context of the concurrency control, a database item
can be:

▪ a field of a database record (tuple),

▪ a database record,

▪ a disk block,

▪ a whole table

▪ a whole file,

▪ a whole database

▪ Each data item granularity has advantages and
disadvantages, but database record granularity is desirable

▪ Phantom record may appear if a finer granularity than a
table is used

SWEN304/SWEN435 Lect20: Concurrency Control 28

