Introduction to Database Systems (1)

> SWEN304/ SWEN435 Trimester 1, 2024

Lecturer: Dr Hui Ma

Engineering and Computer Science

slides by: Pavle Mogin & Hui Ma

- Tutors:
 - Kaan Demir <u>demirkaan@ecs.vuw.ac.nz</u>
 - Kun Huang huangkun@myvuw.ac.nz
 - Zhengxin Fang zhengxin.fang@ecs.vuw.ac.nz
 - Micky Snadden snaddemick@myvuw.ac.nz
 - Veryan Straight: <u>straigvery@myvuw.ac.nz</u>
 - William Jordan: jordanwill2@myvuw.ac.nz
- Class representative nominates:
 - SWEN304: Hanning Qu <u>quhann@myvuw.ac.nz</u>, SWEN435: <u>Quinten Smit <smitquin@myvuw.ac.nz></u>
 - please fill the form at: <u>http://www.vuwsa.org.nz/class-representatives/</u>
- Discord Server: <u>https://discord.gg/az6usY4Ec7</u>

- Fundamental assumptions
- Databases (DB) and data
- Database management systems (DBMS)
- Database systems (DBS)
- Reading:
 - Chapter 1 of the textbook
 - Lecture slides make use of material provided on the textbook's companion website

Introduction

Victoria

- Fundamental Assumptions of Data Management:
 - databases provide data for *multiple* application programs
 - data in databases is accessed and manipulated concurrently
 - data in databases is *dynamic*, that is, may change over time
 - data in databases is *persistent*
 - the amount of data in databases can be huge

Lect2: Introduction to DB

- Our Goals:
 - understand the storage and retrieval of persistent data (principles)
 - understand technology for the management of data in databases (foundations, applications)

Some Immediate Consequences

- Integration of data from various sources:
 - completeness and redundancy freeness
 - utilization of secondary storage
- Data integrity:
 - never violate (static and dynamic) integrity constraints
 - constraints determined by the semantics of the data (and application programs)

Some Immediate Consequences

- Data security / safety:
 - protection against loss of data
 - protection against misuse of data
- Concurrent access to data:
 - synchronization
 - concurrent execution of application programs
 - utilize transactions (serializability)

Basic Terminology

- a database (DB) is a collection of related data that is well structured and stored permanently
- a database management system (DBMS) is a general-purpose software system that facilitates the process of *defining*, *constructing*, *manipulating*, and *sharing* databases among various users and applications.
- a database system (DBS) comprises a DBMS plus one or more databases

Meta-data

- Database definition or descriptive information
- Stored by the DBMS in the form of a database catalog or dictionary
- Manipulating a database
 - Query and update the database of a miniworld
 - Generate reports

- Essential database characteristics are:
 - Represents an aspect of the real world, called miniworld or the universe of discourse (UoD),
 - Reflects (or should reflect) current state of the UoD,
 - We shall suppose it is well structured (even has a strict regular structure),
 - Has users and applications, and
 - Stored in a permanent (persistent) computer memory,
 - Managed by a Database Management System (DBMS)
- All these characteristics have to be met

What is a Database?

Example Commercial Database

Amazon.com

- 20 million books, CDs, videos, DVDs, electronices, apparel and other items
- Occupies over 42 terabytes (1 terabytes = 1024GB)
- Stored on 200 different computers
- 15 million visitors access Amazon.com each day
- the database is continually updated as new books/items are added to the inventory and purchases are transacted
- 100 people are responsible for keeping the database up-to-date

A Simple Sample Database

 University database: information concerning students, courses, and grades in a university environment

STUDENT				
id	Iname	fname	major	
300111	Smith	Susan	COMP	
300121	Bond	James	MATH	
300132	Smith	Susan	COMP	

COURSE				
course_id	cname	points	dept	
SWEN304	DB sys	15	Engineering	
COMP301	softEng	20	Engineering	
MATH214	DisMat	15	Math	

GRADE				
id	course_id	grade		
300111	SWEN304	A+		
300111	COMP301	А		
300111	MATH314	А		
300121	COMP301	В		
300132	COMP301	С		
300121	SWEN304	B+		
300132	SWEN304	C+		

- Is a book (like "Fundamentals of Database Systems") a database?
- 2. Is an old style library card catalog a database?
- 3. Is a bank statement a database?
- 4. Is a spreadsheet, containing contact information, a database?

Definition of Data (Datum)

- Data is a value of
 - a property of an individual UoD object or
 - a *relationship* (between two UoD objects) at a particular period of time

Example

UoD object(s)	James	James & CompSci
Property	Age	Number of Points
Time	July 2008	July 2008
Value	21	240

Victoria UNIVERSITY OF WELLINGTON TE Whate Winanga o te Üpoka Dia a Mäni Topica

A Simplified Database System Layout

Typical DBMS Functionality

- Define a particular database in terms of its data types, structures, and constraints
- Construct or load the initial database contents on a secondary storage medium
- **Manipulating** the database:
 - Retrieval: querying, generating reports
 - Modification: insertions, deletions and updates to its content
- Processing and Sharing by a set of concurrent users and application programs
 - keeping all data valid and consistent

Typical DBMS Functionality

- Protection or Security measures to prevent unauthorized access
- Maintaining the database and associated programs over the life time of the database application
- Presentation and Visualization of data

Defining a table in SQL:

 Retrieve a list of all surnames, course names and grades of 'James'

SELECT	Iname AS SURNAME, cname, grade
FROM	STUDENT S, GRADE G, COURSE P
WHERE	FName = 'James'
AND	s.id = g.id
AND	p.course_id = g.course_id;

Insert two records into STUDENT

```
INSERT INTO STUDENT (fname, lname, id)
VALUES ('Ann', 'Bole', 111111),
('Sharon', 'King' 121212);
```

Essential Roles in Data Management

- The database administrator (DBA) 'owns' the DBMS and is responsible for
 - authorizing access to the database
 - the maintenance of the physical schema
 - the decision on the physical storage structures and access methods
 - physical optimization and tuning
- The data engineer (or data administrator or database designer) 'owns' the database and is responsible for
 - the design of conceptual/logical and external schemata
 - specification of interfaces to application programs (queries, transactions)
 - liaison with current or potential users

Advantages of Using the Database Approach

- Controlling redundancy in data storage and in development and maintenance efforts
 - Data normalization
 - Denomalization: sometimes it is necessary to use controlled redundancy to improve the performance of queries
- Sharing of data among multiple users
- Restricting unauthorized access to data

Advantages of Using the Database Approach

- Providing persistent storage for program Objects (in Object-oriented DBMS's)
 - Complex object in C++ can be stored permanently in an object-oriented DBMS
 - Impedance mismatch problem: object-oriented database system typically offer data structure compatibility
- Providing storage structures for efficient query processing
 - Index
 - Buffering and catch
 - Query processing and optimisation

Advantages of Using the Database Approach

- Providing backup and recovery services
- Providing multiple interfaces to different classes of users
- Representing complex relationships among data
- Enforcing integrity constraints on the database
 - Referential integrity constraint
 - Key or uniqueness constraint
- Drawing inferences and actions using rules
 - E.g. triggers and stored procedures

Summary

- A database is a collection of related data that is well structured and stored permanently
- A data (datum) is a value of an real object's (or of a relationship between two objects) property in a perceived moment of time
- A DBMS is a set of programs that allows a comfortable database usage:
 - Defining
 - Populating by data,
 - Querying,
 - Preserving consistency,
 - Protecting from misuse,
 - Recovering from failure, and
 - Concurrent using

- Data models
- Schemas and instances
- The three schema architecture
- Data independence
- Database users and languages

- Reading:
 - chapter 2 of the textbook