
0

SWEN304 / SWEN435

Trimester 1, 2024

Lecturer: Kevin Shedlock

Engineering and Computer Science

SWEN304 / SWEN435 Lecture 12: SQL(3)

SQL: Nested Queries, Advanced Options,

Updates, and Views

SWEN304/ Swen435 Course Noticeboard

1. Course Tutors are available at help desk labs in Room

CO246. The days and times are:

▪ Monday, 2-3pm

▪ Friday 2-3pm

2. Assignment-1 is due in week 5

SWEN304 / SWEN435 1Lecture 11: SQL(2)

Outline

▪ Nested Queries

▪ Aggregate Functions

▪ Advanced options of the query language

▪ Joined tables,

▪ Aggregate functions

▪ Grouping

▪ SQL views

▪ Additional features of SQL

SWEN304 / SWEN435 2Lecture 12: SQL(3)

Nested Queries

▪ Some queries require comparing a tuple to a
collection of tuples (e.g., students doing courses
that have more than 100 students)

▪ This task can be accomplished by embedding a SQL
query into WHERE clause of another query

▪ The embedded query is called nested query,

▪ The query containing the nested query is called
outer query

▪ The comparison is made by using IN,  ANY, 
SOME, and  ALL operators, where { =, <, <=,
>=, >, < > }

▪ Note: IN  =ANY and IN  =SOME

SWEN304 / SWEN435 3Lecture 12: SQL(3)

Example Nested Query

SWEN304 / SWEN435

FName

James

4

▪ Retrieve first names of students that passed M214
SELECT FName
FROM STUDENT s
WHERE s.StudId IN

(SELECT StudId FROM GRADES
WHERE CourId = 'M214' AND Grade IS NOT

NULL);

Lecture 12: SQL(3)

Example Nested Query

SWEN304 / SWEN435 5

▪ A nested query defined by using IN (or =ANY) operator
can be expressed as a single block query

SELECT FName

FROM STUDENT s, GRADES g

WHERE s.StudId = g.StudId AND g.CourId = 'M214'

AND g.Grade IS NOT NULL;

Lecture 12: SQL(3)

Correlated Nested Queries

▪ Let the variable s contain the current tuple of the outer
query

▪ If the nested query doesn’t refer to s :
▪ The nested query computes the same result for each

tuple in s

▪ The outer query and the nested query are said to be
uncorrelated

▪ If a condition in the WHERE clause of the nested query
refers to some attributes of a relation declared in the
outer query, the two queries are said to be correlated

▪ Have to compute the inner query for each tuple
considered by the outer query

▪ Correlated nested queries consume more computer time
than uncorrelated ones

SWEN304 / SWEN435 6Lecture 12: SQL(3)

Correlated Nested Query

▪ Retrieve id's and surnames of those students that
passed at least one course
SELECT s.StudId, FName
FROM Student s
WHERE s.StudId IN

(SELECT StudId FROM GRADES

WHERE s.StudId = StudId AND

Grade IS NOT NULL);

▪ Evaluation of the query:

▪ when s.Stud Id = 131313,
⇒ result of the nested query is StudId = {131313},
⇒ (131313, Susan) is in the final result

▪ When s.Stud Id = 010101,
⇒ result of the nested query is StudId = { },
⇒ (010101, John) is NOT in the final result

SWEN304 / SWEN435 7Lecture 12: SQL(3)

Correlated Nested Query

SWEN304 / SWEN435 8

▪ Again, the nested query can be expressed as a single
block query:

SELECT DISTINCT s.StudId, s.LName

FROM STUDENT s, Grades g

WHERE s.StudId = g.StudId AND Grade IS NOT

NULL;

▪ Have to be careful of duplicates!

▪ This computes an Equi-Join of the relations

Lecture 12: SQL(3)

EXISTS and NOT EXISTS

SWEN304 / SWEN435 9

▪ EXIST and NOT EXIST are used in conjunction with correlated nested
queries

▪ Retrieve Id‘s and surnames of students who passed at least one
course:

SELECT s.StudId, s.LName FROM STUDENT s
WHERE EXISTS

(SELECT * FROM GRADES
WHERE s.StudId = StudId AND Grade IS NOT NULL);

Lecture 12: SQL(3)

▪ Retrieve Id's and surnames of students who didn't pass any course:

SELECT s.StudId, s.LName FROM STUDENT s
WHERE NOT EXISTS

(SELECT * FROM GRADES
WHERE s.StudId = StudId AND Grade IS NOT NULL);

EXISTS and NOT EXISTS

SWEN304 / SWEN435 10Lecture 12: SQL(3)

Summary (Including Last Friday)

▪ SQL as DML: INSERT, UPDATE and DELETE

▪ SQL as a query language

▪ Basic Query structure

▪ Queries against a single table

▪ Queries against multiple tables

▪ Substring comparisons

▪ Arithmetic operations

▪ Sorting

▪ Nested queries (outer and inner-nested queries)

▪ Correlated nested queries

SWEN304 / SWEN435 11Lecture 12: SQL(3)

Joined Tables in SQL and Outer Joins

▪ Joined table

▪ Permits users to specify a table resulting from a
join operation in the FROM clause of a query

▪ To avoid mixing conditional expressions and join
conditions in the WHERE clause, it is possible to
define join in the FROM clause

SWEN304 / SWEN435 12Lecture 12: SQL(3)

UNIVERSITY Database

CourId Cname Points Dept

COMP302 DB sys 15 Engineering

COMP301 softEng 20 Engineering

COMP201 Pr & Sys 22 Engineering

MATH214 DisMat 15 Mathematics

COURSE

StudId Lname Fname Major

300111 Smith Susan COMP

300121 Bond James MATH

300143 Bond Jenny MATH

300132 Smith Susan COMP

STUDENT

StudId CourId Grade

300111 COMP302 A+

300111 COMP301 A

300111 MATH214 A

300121 COMP301 B

300132 COMP301 C

300121 COMP302 B+

300143 COMP201ω

300132 COMP201ω

300132 COMP302 C+

GRADES

SWEN304 / SWEN435 1313

UNIVERSITY ={STUDENT(StudId, Lname, Fname, Major),

COURSE(CourId, Cname, Points, Dept),

GRADES(StudId, CourId, Grade)}

IC = {GRADES[Id]  STUDENT[Id],

GRADES[Course_id]  COURSE[Course_id]}

Lecture 12: SQL(3)

▪ Q1: Retrieve first name, course id and corresponding
grades of the student with Student Id = 007007

SELECT FName, CourId, Grade
FROM (STUDENT NATURAL JOIN GRADES)

WHERE StudId = 007007 ;

▪ The FROM clause contains a single joined table

Joined Tables in SQL

SWEN304 / SWEN435 14Lecture 12: SQL(3)

Joined Tables in SQL

▪ Specify different types of joins

▪ Inner Joins:

▪ JOIN, INNER JOIN, EQUIJOIN, NATURAL JOIN,

▪ Outer Joins:

▪ LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN

▪ The keyword OUTER may be omitted

▪ CROSS JOIN is used to specify the CARTESIAN PRODUCT
operation and should be used only with the utmost care

▪ Each join operation concatenates those tuples from
two relations that have such join attribute values and
satisfy the JOIN condition.

SWEN304 / SWEN435 15Lecture 12: SQL(3)

Joined Tables in SQL

▪ Inner join

▪ Default type of join in a joined table

▪ Tuple is included in the result only if a matching
tuple exists in the other relation

▪ Outer join has been defined to overcome
problems with null values and tuples of the
referenced table not being referenced

SWEN304 / SWEN435 16Lecture 12: SQL(3)

Inner Joins

▪ Two relation can be joined with join conditions,
comparing pairs of attribute values using
operations, { =, <, <=, >, >=, < > }

▪ An equijoin is a join using only equality operator

▪ A NATURAL JOIN on two relations R and S

▪ No join condition specified

▪ Implicit EQUIJOIN condition for each pair of
attributes with same name from R and S

▪ Each pair of attributes appears only once

SWEN304 / SWEN435 17Lecture 12: SQL(3)

JOIN

SWEN304 / SWEN435 18

R1 R2 R1 JOIN R2

A B B C A B B C

a1 ω b1 c1 a2 b1 b1 c1

a2 b1 b2 c1

b3 c1

A B C

a2 b1 c1

▪ Using JOIN operator

SELECT * FROM R1 JOIN R2 ON R1.B = R2.B;

▪ Using NATURAL JOIN operator

SELECT * FROM R1 NATURAL JOIN R2;

Lecture 12: SQL(3)

LEFT OUTER JOIN

SWEN304 / SWEN435 19

R1 R2 R1 LEFT JOIN R2

A B B C A B B C

a1 ω b1 c1 a1 ω ω ω

a2 b1 b2 c1 a2 b1 b1 c1

b3 c1

▪ Every tuple in left table must appear in result

▪ If no matching tuple

• Padded with NULL values for attributes of right table

SELECT * FROM R1 LEFT JOIN R2 ON R1.B = R2.B;

Lecture 12: SQL(3)

▪ Every tuple in right table must appear in result

▪ If no matching tuple

• Padded with NULL values for attributes of right table

SELECT * FROM R1 RIGHT JOIN R2 ON R1.B = R2.B;

RIGHT OUTER JOIN

R1 R2 R1 RIGHT JOIN R2

A B B C A B B C

a1 ω b1 c1 a2 b1 b1 c1

a2 b1 b2 c1 ω ω b2 c1

b3 c1 ω ω b3 c1

SWEN304 / SWEN435 20Lecture 12: SQL(3)

FULL OUTER JOIN

▪ All tuples from both relations must appear in result
SELECT * FROM R1 FULL JOIN R2 ON R1.B = R2.B;

R1 R2 R1 RIGHT JOIN R2

A B B C A B B C

a1 ω b1 c1 a1 ω ω ω

a2 b1 b2 c1 a2 b1 b1 c1

b3 c1 ω ω b2 c1

ω ω b3 c1

SWEN304 / SWEN435 21Lecture 12: SQL(3)

Aggregate Functions in SQL

▪ Used to summarize information from multiple
tuples into a single-tuple summary

▪ Grouping

▪ Create subgroups of tuples before summarizing

▪ Built-in aggregate functions

▪ COUNT, SUM, MAX, MIN, and AVG

▪ Functions can be used in the SELECT clause or
in a HAVING clause

SWEN304 / SWEN435 22Lecture 12: SQL(3)

Aggregate Functions: Examples

SWEN304 / SWEN435 23

NoOfNames

1

sum_Points

52

Q2: What is the total point value of the courses in the COMP

dept?

SELECT SUM(Points)
FROM COURSE
WHERE Dept = 'Comp';

Q3: How many different first names do COMP majors have?

SELECT COUNT(DISTINCT FName) AS NoOfNames
FROM STUDENT
WHERE Major = 'Comp';

Lecture 12: SQL(3)

Grouping

▪ GROUP BY clause create groups of tuples used to apply

an aggregate function to

▪ Groups are determined by means of a grouping attribute
list and all attributes from that list have to appear in the
query result (i.e. appear in the SELECT clause)

▪ Example:

For each student, retrieve the number of courses passed

SELECT StudId, COUNT(*)
FROM GRADES
WHERE Grade IS NOT NULL

GROUP BY StudId ;

SWEN304 / SWEN435 24

StudId COUNT(*)

300111 3

300121 2

300132 2

Lecture 12: SQL(3)

▪ HAVING clause is used to choose from groups according

to a condition specified on aggregate function values

▪ Whereas a conditional expression in the WHERE clause
filters individual tuples, the HAVING clause filters groups

of tuples

▪ Example:

Retrieve the number of courses passed for students that
passed at least three courses

SELECT StudId, COUNT(*)
FROM STUDENT s NATURAL JOIN GRADES g
WHERE Grades IS NOT NULL

GROUP BY s.StudId
HAVING COUNT(*) > 2;

HAVING Clause

SWEN304 / SWEN435 25

StudId COUNT(*)

300111 3

Lecture 12: SQL(3)

▪ An SQL query can consist of up to six clauses

▪ but only SELECT and FROM are mandatory

▪ the HAVING-clause can only be specified with a GROUP
BY-clause

▪ The clauses are specified in the following order:

SELECT 〈attribute_and_function_list〉
FROM 〈table_list〉
[WHERE 〈condition〉]
[GROUP BY 〈grouping_attribute_list〉]
[HAVING 〈group_condition〉]
[ORDER BY 〈attribute_list〉]

Summary of SQL queries

SWEN304 / SWEN435 26Lecture 12: SQL(3)

▪ SQL has directly implemented set operations

▪ UNION, EXCEPT (difference), and INTERSECT

▪ Operations on union compatible relations (same
attributes, in the same order), results sets of tuples;
(demo)

▪ e.g.

▪ Retrieve student ids of the students that didn't
enroll in M214

(SELECT StudId

FROM STUDENT)

EXCEPT

(SELECT StudId FROM GRADES
WHERE CourId = 'M214');

Set Theoretic Operations

SWEN304 / SWEN435 27

StudId

300132

300121

300143

Lecture 12: SQL(3)

https://www.w3schools.com/SQL/sql_union.asp

Queries

▪ Query: Retrieve student ids of the students who got
A+ for all the grades she/he achieved so far

▪ Query: Retrieve student ids of the students who has
never got A+ so far

SWEN304 / SWEN435 28

StudId CourId Grade

300111 COMP302 A+

300111 COMP301 A

300111 MATH214 A

300121 COMP301 B

300132 COMP301 C

300121 COMP302 B+

300143 COMP201ω

300132 COMP201ω

300132 COMP302 C+

GRADES

Lecture 12: SQL(3)

Views in SQL

▪ A SQL view is a virtual table that is derived from
other base or virtual tables

▪ Base tables are defined by CREATE TABLE

command and are permanently stored in a
database

▪ Virtual tables are defined by the CREATE VIEW

command to avoid defining complex SQL
retrieval expressions repeatedly

▪ The definition of a view is stored in the Catalog,
but it is not stored in the database itself, so it is
computed every time it is used in a query

SWEN304 / SWEN435 29Lecture 12: SQL(3)

SQL Views

SWEN304 / SWEN435 30

▪ A possible view definition

CREATE VIEW StudOccupied AS

SELECT g.StudId, SUM(Hours) AS Occupied
FROM Grades g, Course p
WHERE g.CourId = p.CourId AND Grade IS NULL

GROUP BY StudId ;

▪ Deleting a view

DROP VIEW StudOccupied;

Lecture 12: SQL(3)

Additional Features of SQL

▪ Assertions as general constraints (CREATE

ASSERTION – a DDL command that may use DML
SELECT command)

▪ Triggers as procedures stored with tables

▪ GRANT and REVOKE commands to deal with database

user privileges

▪ Embedded SQL and CURSOR

▪ SQL transaction control commands (COMMIT,
ROLLBACK)

▪ User Defined Functions (UDF):

▪ SQL Functions

▪ Procedural Language (C, PL/pgSQL, Java) Functions

SWEN304 / SWEN435 31Lecture 12: SQL(3)

Summary

▪ The relational database language has commands to
define:

▪ database structure (schema, domain, table, and
constraints) (CREATE SCHEMA, CREATE DOMAIN,
CREATE TABLE)

▪ queries (SELECT… FROM… WHERE… GROUP
BY…HAVING… ORDER BY…)

▪ update operations (INSERT, DELETE, UPDATE)

▪ views (CREATE VIEW)

▪ additional features (ASSERTION, TRIGGER,
CURSOR, GRANT, REVOKE, COMMIT, ROLLBACK,

DEFINE FUNCTION)

▪ SQL is defined by a standard, with implementations that
have some dialects and exceptions

SWEN304 / SWEN435 32Lecture 12: SQL(3)

Next Lecture

▪ SQL tutorial

▪ And then...

▪ Relational Algebra with Hui! (Bye )

▪ Chapter 6

SWEN304 / SWEN435 33Lecture 12: SQL(3)

