
SWEN304 Lect3: Introduction DB(2) 0

Introduction to
Database Systems (2)

SWEN304 / SWEN435

Trimester 1, 2024

Lecturer: Kevin Shedlock

Engineering and Computer Science

Outline

▪ Data models

▪ Schemas and Instances

▪ The Three-Schema Architecture

▪ Program - Data Independence

▪ Data manipulation languages

▪ Navigational

▪ Declarative

▪ Reading: Chapter 2 of the textbook

SWEN304 Lect3: Introduction DB(2) 1

Data Models

A Data Model: a set of concepts to describe the
structure of a database, the operations for
manipulating these structures, and certain
constraints that the database should obey

A data model is a mathematical abstraction used:

▪ to make an approximate representation (an
abstraction) of a real system, or;

▪ to model a database of this real system

SWEN304 Lect3: Introduction DB(2) 2

Categories of Data Models

1. Conceptual (high-level, semantic) data models:

▪ Provide concepts close to the way users perceive data

▪ Entity-based or object-based data models

2. Physical (low-level, internal) data models:

▪ Concepts describe how data is stored in the computer

3. Implementation (Representational) data models

▪ Provide concepts that fall between the above two:
balances user views with some computer storage details

▪ Relational data model: used in many commercial products
(DB2, ORACLE, SQL Server, …)

▪ Legacy data models: network model, hierarchical model
SWEN304 Lect3: Introduction DB(2) 3

Data Models

A fundamental characteristic of the database is that it
provides some form of data abstraction (details of data
organization; storage; and, essential features for it to work
with data.

Constructs are used to define the database structure

Constraints are statements about values and
relationships that must hold between data

Operations specify database retrievals and updates by
referring to the constructs of the data model

SWEN304 Lect3: Introduction DB(2) 4

A Database Instance

Id Lname FnameMajor

300111 Smith Susan COMP

300121 Bond James MATH

300132 Smith Susan COMP

STUDENT

Course_idCname Points Dept

COMP302 DB sys 15 Engineering

COMP301 softEng 20 Engineering

MATH214 DisMat 15 Mathematics

COURSE

Id Course_id Grade

300111 COMP302 A+

300111 COMP301 A

300111 MATH214 A

300121 COMP301 B

300132 COMP301 C

300121 COMP302 B+

300132 COMP302 C+

GRADES

SWEN304 Lect3: Introduction DB(2) 5

Te Taupanga University of
Performing Arts (TTUPA)

Three-Schema Architecture

▪ Internal Schemas:
▪ describes physical storage and access structures,

e.g. indexes, hashing algorithms, pointers

▪ Access path to database; complete details of database

▪ Conceptual Schema:
▪ Provides entire description of database

▪ abstract, integrated description of all data independent
from the implementation

▪ mapped to physical schema

▪ External Schemas:
▪ perspective of a user/application accessing the database

▪ describes restructured parts of the database (views)
used for a particular application

▪ mapped to the logical schema

SWEN304 Lect3: Introduction DB(2) 6

Three-Schema Architecture

SWEN304 Lect3: Introduction DB(2) 7

(Elmasri & Navathe, 2011)

Schemas and Instances

▪ A database schema (or intension):
the abstract description of a database

▪ includes the descriptions of the database structure
and the constraints that should hold in the database.

▪ is “fairly” static

▪ given in the context of a particular data model and a
corresponding data definition language

SWEN304 Lect3: Introduction DB(2) 8

STUDENT (Id, Lname, Fname, Major),

GRADES (Id, Course_id, Grade),

COURSE (Cname, Course_id, Points, Dept)

RELATIONAL Schema

Schemas and Instances

▪ A schema diagram: an illustrative display of (most
aspects of) a database schema

▪ A schema construct: a component of the schema
or an object within the schema
▪ e.g. STUDENT, COURSE

SWEN304 Lect3: Introduction DB(2) 9

STUDENT COURSEGRADES

Enhanced Entity Relationship (EER) Schema Diagram

LnameFname

Id Major

Grade

Dept

CnameCourse_Id

Points

Schemas and Instances (continued)

▪ A database instance (or extension/state): the

actual data in a database at a specific moment in time

▪ produced by populating (loading) schema
description with data

▪ corresponds to schema structure, and

▪ satisfies all schema constraints

▪ A database instance should reflect changes in the
real system’s state (i.e. via updates)

SWEN304 Lect3: Introduction DB(2) 10

Data Independence

▪ In the traditional approach, information about a file’s
physical structure was embedded into programs

▪ The same was true for the first (pre-relational)
database systems

▪ Changing the file structure induced changes in
programs

▪ This is called program-data dependence

▪ To avoid this, we introduced procedures for
physical and logical data independence

SWEN304 Lect3: Introduction DB(2) 11

Logical Data Independence

▪ The external presentation/manipulation of the data is
almost independent of the conceptual organization

▪ Changes to the conceptual/logical schema should
not affect the external schema

▪ Only the mapping needs to be changed

▪ An application program should only see the external
schema (unfortunately, computationally hard to achieve
– view update problem)

SWEN304 Lect3: Introduction DB(2) 12

Logical Data Independence

SWEN304 Lect3: Introduction DB(2) 13

Program

#1

Program

#2

Program

#3

Program

#4

External

View #2

External

View #3

External

View #1 DBMS

DBMS

DBMS

DBMS

Logical

Independence
Physical

Independence

Data

Base

Conceptual
Schema

Physical Data Independence

▪ The physical organisation of the data is almost
independent of the conceptual organisation

▪ Changes to physical schema have no implications on
the logical/conceptual layer

▪ Abstracts from the realisation of the DBMS storage
organisation: allows reasoning about the data.

▪ Allow physical optimisation/tuning

SWEN304 Lect3: Introduction DB(2) 14

Physical Data Independence

SWEN304 Lect3: Introduction DB(2) 15

Program #1

Program #n

Data

Base

Program #2

DBMS

Physical

Independence

Conceptual

Schema

Universe of TTUPA

SWEN304 / SWEN435 Lect2: Introduction to DB 16

▪ TTUPA: Some
small part of the
real world that
we want to
model

▪ Not to be
confused with
the Unicorns of
Discourse…

Database Approach FOR TTUPA

SWEN304 Lect3: Introduction DB(2) 17

Data

base

Application #n

Application #1 Application #2

Application #3

Data Organization Approaches

▪ Suppose TTUPA functions (e.g. HR, Sales,
Payroll Accounting) are provided by several
applications

▪ There are two characteristic approaches to data
organisation and storage in such an IT system:

1. Traditional (file) approach: each application
contains all necessary data, organised into files

2. Database approach: all applications use a
common database (no one application owns it)

SWEN304 Lect3: Introduction DB(2) 18

Database Languages and Interfaces

▪ It is common to distinguish language according
to its specific purpose:

▪ A data definition language (DDL) is used to
define the database schemata

▪ A data manipulation language (DML) is used to
update data in the database (insert, delete, modify)

▪ A query language is used to access the data in
the database and to retrieve data

SWEN304 Lect3: Introduction DB(2) 19

Data Manipulation Language (DML)

▪ Used to retrieve, insert, delete, and modify data

▪ Always selects a (relatively) small part of a
database and transfers it from disk to memory

▪ A DML can be:

▪ Either Navigational, or

▪ Declarative

SWEN304 Lect3: Introduction DB(2) 20

Navigational DML

▪ A navigational DML:

▪ Procedural (has loops, branching conditions),

▪ Selects records one at a time

▪ Programmer explicitly utilises information about
the database’s physical organisation to
“navigate” through the database

▪ Programmer defines WHAT and HOW

▪ Any issues with this?

SWEN304 Lect3: Introduction DB(2) 21

Declarative DML

▪ A declarative DML:

▪ Non procedural

▪ Set oriented (selects all data that matches given
conditions)

▪ Search conditions are defined according to abstract
database representation; programs are completely
independent of the DB’s physical organization

▪ A programmer (or even a casual user) has to
define just WHAT

▪ Pros/cons?

SWEN304 Lect3: Introduction DB(2) 22

Navigational Versus Declarative DML

▪ Query: “Retrieve all Courses and Grades of the
student with Id = 300111”

▪ Simplified navigational pseudo code:

Find record with Id= 300111 in GRADES
If successful then

Do while there are courses connected to the student
Find next course Id in GRADES
Find corresponding Grade
Find Course name in COURSE

End do
Else

Display error message
End if

SWEN304 Lect3: Introduction DB(2) 23

Navigational Versus Declarative DML

▪ Query: “Retrieve all Courses and grades of the
student with Id = 300111”

▪ A fully declarative program:

SELECT Course_id, Cname, Grade

FROM COURSE C, GRADES G

WHERE Id = 300111 AND G.Course_id =

C.Course_id;

SWEN304 Lect3: Introduction DB(2) 24

Database Users and Languages

▪ Database administrator (DBA):

▪ DDL describes conceptual (or implementation) schema

▪ View Definition Language (VDL) describes user views

▪ Storage Definition Language (SDL) describes internal schema

▪ Casual end users:

▪ Interactive declarative DML – mainly for database queries

▪ Naïve users:

▪ Canned transaction programs (written by programmers)

▪ Programmers:

▪ Interactive DML

▪ DML embedded into general purpose programming language

SWEN304 Lect3: Introduction DB(2) 25

Summary

▪ A data model: a set of concepts to describe the
structure of a database, the operations for
manipulating these structures, and certain constraints
that the database should obey

▪ A database instance refers to the actual data
stored in a database at a particular moment in time

▪ The three schema architecture (external,
conceptual, and internal schemas): introduced to
enable logical and physical data independence

▪ Advantages of the DB over traditional approach:
▪ Program-data independence

▪ Data consistency

▪ DBMS controlled data sharing and recovery

SWEN304 Lect3: Introduction DB(2) 26

Plan for the Next Lecture

▪ Introduction to the relational data model –
motivations and basic ideas

▪ Basic terms/concepts of the relational data model

▪ Relational schemas and instances

▪ Constraints of the relational data model

▪ Reading:

▪ Sections 5.1 and 5.2, Chapter 5 of the textbook

SWEN304 Lect3: Introduction DB(2) 27

Set Notations

▪ We use set notation for formal definitions in this course

▪ A set is several things considered together as one thing

▪ There are two ways to specify a set:

1. {x1 ,…, xn}, list all the elements in a set

▪ {}, the empty set

▪ {Wellington, Auckland, Christchurch}

▪ {{A}, {A, B}, {A, B, C}}, a set of sets

2. {x|x }, describe the members that satisfy a property

▪ {x|x N}, the set of natural numbers

▪ {students | all the students enrolled in SWEN304}

SWEN304 Lect3: Introduction DB(2) 28

Set Notations

▪ If two sets have the same members, they are the same
set

▪ If one set contains something that is not in the other
set, then they are different

▪ e.g. {1, 2, 3} {1, 2, 4}

▪ The members in a set have no order

▪ e.g. {1, 2} = {2, 1}

▪ Each element cannot be in the set more than once

▪ E.g. {1, 1} = {1}

SWEN304 Lect3: Introduction DB(2) 29

Set Operations

Membership: x ∈ A if x is in set A
x ∉ A if x is not in set A

Equality: A and B are equal if they have the
same members, A = B

Subset: If every member of A is in B, we write
A ⊆B; A is called a proper subset of B
if A ⊆B and A and B are not equal

SWEN304 / SWEN435 Lect2: Introduction to DB 30

Set Operations

Union: A ∪B for the set containing everything

in A and B

e.g. {a,b,c} ∪ {a,c,d,e} = {a,b,c,d,e}

Intersection: A ∩B for the set of elements
that are in both A and B

e.g. {a,b,c} ∩ {a,c,d,e} = {a,c}

Difference: A −B for the set of elements
from A but not B

e.g. {a,b,c} − {a,c,d,e} = {b}

SWEN304 / SWEN435 Lect2: Introduction to DB 31

Examples of Set Operations

SWEN304 Lect3: Introduction DB(2) 32

▪ Let A= {x, y, z}, B = {1, 2}

▪ Which of the following are correct?

1. {y} A

2. z A

3. {x, y} (A ∪ B)

4. x (A ∩ B)

5. x (A – {y, z})

▪ ({x,1} ∪ A) ∩ B = ?

Cartesian Products of Sets

▪ A n-tuple is an ordered list of n elements

▪ (Hui, 5657) is a 2-tuple, (x, y, 1, 2, 2) is a 5-tuple

▪ The Cartesian product operation takes an ordered list
of sets and returns a set of tuples

▪ Cartesian product D1×… × Dn is the set of all possible
combinations of values from the sets D1,…, Dn

▪ For example, D1 ={Wellington, Auckland}, D2 = {1, 2, 3}

D1×D2 ={(Wellington, 1), (Wellington, 2), (Wellington, 3),
(Auckland, 1), (Auckland, 2), (Auckland, 3)}

SWEN304 Lect3: Introduction DB(2) 33

