

The Relational Data Model

SWEN304 / SWEN435 Trimester 1, 2024

Lecturer: Kevin Shedlock Engineering and Computer Science

- Basic terms and concepts:
 - Relation Schema, Attribute, Domain
 - Relation, Tuple
 - Relational database schema
 - Relational database instance
- Relational integrity constraints
 - Domain constraints, Attribute constraints
 - Key constraint, Unique constraint
 - Interrelation constraints
- Constraint violation: database updates
- Reading 3: Chapter of the Relational Data Model

History of Relational Database Systems

- Network and hierarchical database systems
 - Emerged in 1960s
 - Complex data structures (hard to comprehend & use)
 - No separation between logical and physical data description (*program data dependency*)
 - Navigational programming languages (low programming productivity)

History of Relational Database Systems

- Introduced in 1970 by E. F. Codd
- Provides a very simple way of storing, manipulating and retrieving information
- The relational data model (RDM) represents the database as a collection of relations
- Mathematically, relations are sets of tuples (or records)
- Well-defined concepts and easy to understand
- Clear separation of the (syntactical) schema level and the (semantic) instance level

The Relational Model of Data (RDM)

- The use of relations enables a purely logical treatment of data management tasks
- Relations enables physical data independence
 - All physical structure concepts (storage, pointers, entry point records, hashing algorithms, access tree structures, ...) hidden from users/programmers
- Declarative language for DB querying & updating
- The RDM is the *de facto* standard for commercial database systems

Domains, Attributes, Tuples and Relations

The TTUPA STUDENT Domain:

Relation Schema: Formally!

- A Relation Schema is denoted by $N(A_1:D_1,...,A_n:D_n)$
 - *N* is the name of the relation
 - $A_1, A_2, ..., A_n$ are the *n* attributes of the relation schema
 - Each attribute has a domain *D* or a set of valid values
 - And a set of constraint *C* defined on it (discussed later)
- The degree (or arity) of the relation is the number of attributes *n* of a relation schema *N*
- Example: SUPPLIER (Supplier_no: *INT*, Name: *STRING*, Address: *STRING*)
 - SUPPLIER is the relation name
 - Defined over the three attributes: Supplier_no, Name, Address. Thus, n=3

Relation Schema and Its Instances

- A relation is an instance of the relation schema N(A₁:D₁,..., A_n:D_n)
 - denoted by r(N) or simply r

- A relational variable ρ(N) of the type N is the place holder of relation r(N)
 - The relational variable \(\rho(N)\) (denoted in SQL simply by \(N)\) contains an instance of the relation schema \(N\) in each moment of time
 - It is the current instance of our relation schema N(A₁:D₁,..., A_n:D_n) in the database

There is a domain *D* associated with each attribute *A*, denoted by dom(A) = D

Domain *D* is a set of values:

- Either defined by basic data types, such as STRING, DATE:
 - e.g. *dom* (Lname) = *STRING*
- or defined by type specification:
 D = {d_i | i = 1, ..., n } with D as domain name
 and d_i as a domain element that satisfies a constraint
 - e.g. *CourseIdDom* = {'SWEN304', 'MATH114', 'STAT193',...} *dom* (Course_id) = *CourseIdDom* Set of character strings: 4x capital letters + 3 digits

- Let $R = \{A_1, \dots, A_n\}$ be a set of attributes and $dom(A_i) = D_i$ where $i = 1, \dots, n$
- a relation r over R is a finite set of (n-)tuples t_i : $r = \{t_1, ..., t_n\}$

- It is common to use table notation for relations
 - the attributes of *R* correspond to the column heads
 - the *n*-tuple correspond to the rows
 - the order of the rows in such a table is not important

- A property of a set of similar TTUPPA objects, e.g.
 - Id, Fname, Dept, (semantically defined attributes)
 - *A*, *B*, ..., *X*, *Y* (semantically un-interpreted attributes)
- The attribute name is used to interpret the meaning of the data for that attribute
- Some notational conventions:
 - {Fname + Lname, Fname + Major } instead of {{Fname, Lname }, {Fname, Major }}

 A tuple *t* over a relation schema N(A₁:D₁,..., A_n:D_n) is an ordered list of values, denoted:

$$t = \langle v_1, ..., v_n \rangle$$
 or $t = (v_1, ..., v_n)$

Each value is from a given *domain* or is a *null* value (ω)

- For example: t = <247, 'Feed The Crowds', 'Bumpytown'>
 - Is a tuple (row) in the SUPPLIER relation
 - is called a 3-tuple as it has 3 values

• Tuple *t* is also sometime represented as:

 $t = \{ (A_1, v_1), \dots, (A_n, v_n) \}$

with (A_n, v_n) as (attribute, value) pairs

 For example: t = { ('Supplier_No', 247), ('Name', 'Feed The Crowds'), ('Address', 'Bumpytown')}

Relation Schema, Variable, and Instances

Relation Schema:

STUDENT(Lname: *STRING*, Fname: *STRING*, Id: *STRING*, Major: *STRING*)

The TTUPA STUDENT Domain instances:

- 1. Suppose you have a set of tuples, $\{t_1, t_2, t_3\}$, where each t_i is a tuple over attributes *R*.
 - How many different relations over R can be built by using subsets of this set of tuples?

- 2. Suppose you are given a set of 100 tuples over the same set of attributes *R*
 - How many different relations over R can be built by using subsets of this set of tuples?

2^100= a lot

Restrictions

- Let R = {A₁,..., A_n} be the set of attributes of a relation schema N and r(N) = {t₁,..., t_n}
- Restriction of a tuple *t* onto $\{A_k, ..., A_m\} \subseteq \{A_1, ..., A_n\}$, denoted as $t [A_k, ..., A_m]$, refers to a **sublist** of values $(v_k, ..., v_m)$ in $t = (v_1, ..., v_n)$, for $1 \le k$ and $m \le n$
- Example: STUDENT = {Id, Lname, Fname, Major}
 t = (300121, Bond, James, MATH)
 t [Lname] = <Bond>,
 t [Fname, Major] = <James, Math>
- Restriction of a relation *r* onto a set of attributes {*A_k*,..., *A_m*}, is denoted by:
 r(*N*)[*A_k*,..., *A_m*] = {*t* [*A_k*,..., *A_m*] | *t* ∈ *r*}

• Given a relation

STUDENT				
ld	Lname	Fname	Major	
300111	Smith	Susan	COMP	
300121	Bond	James	MATH	
300132	Smith	Susan	COMP	
300135	John	Cecil	MATH	

What is r(STUDENT)[Lname, Major]?

b

a)		
aj	Lname	Major
	Smith	COMP
	Bond	MATH
	Smith	COMP
	John	MATH

)	Lname	Major
	Bond	MATH
	Smith	COMP
	John	MATH

~	1
C	

Lname	Major
Smith	COMP
Bond	MATH
John	MATH

Definitions: In Summary!

- Given a relation schema $N(A_1:D_1, A_2: D_2, \dots, A_n: D_n)$
 - *N* is the **name** of the relation
 - A_1, A_2, \dots, A_n are the **attributes** of the relation
 - D_i is the **domain** of attribute A_i : $dom(A_i) = D_i$
- For convenience we sometimes omit the domain assignment from a relation schema
- Relation r(N): a specific **state** (or "value" or "population") of N as a *set of tuples* (rows)
 - $r(N) = \{t_1, t_2, \dots, t_n\}$ where each t_i is an n-tuple

Cartesian

• $t_i = \langle v_1, v_2, ..., v_n \rangle$ where each v_i is an element of $dom(A_i)$

Lect4 & 5[.] RDM

• $r(R) \subset dom(A_1) X dom(A_2) X \dots X dom(A_n)$

Proper Subset Cartesia

- Let $N(A_1, A_2)$ be a relation schema:
- Let $dom(A_1) = \{0,1\}, dom(A_2) = \{a,b,c\}$
- Then: *dom(A₁)* X *dom(A₂)* is all possible combinations:
 {<0,a> , <0,b> , <0,c> , <1,a> , <1,b> , <1,c> }
- The relation state $r(N) \subset dom(A_1) \setminus dom(A_2)$
- Example: r(N) could be {<0,a> , <0,b> , <1,c> }
 - this is one possible state (or "population" or "extension") r of the relation N, defined over A₁ and A₂
 - It has three 2-tuples: <0,a> , <0,b> , <1,c>
 - How many different states (instances) can there be?

Consider schema STUDENT(Id, Lname, Fname, Major)

- 1. Suppose each attribute (e.g. Lname) can have 100 different values
 - a) How many different individual records of the STUDENT schema construct can be made?

e.g. (007007, Bond, James, Comp), or (010101, Wong, Sue, Math),

100^4

- b) How many different student records can be created if we create a constraint that each record must have a unique *Id* value?
- 2. Suppose, instead, each attribute (e.g. Lname) can have only 2 different values, and there is no restriction on *Id* values
 - How many different sets of records (instances) can be made?

2^(2^4)=2^16 2^16=65536