Lossless Join Decomposition Tutorial

SWEN304/SWEN435

Lecturer: Dr Hui Ma

Engineering and Computer Science

- Lossless join decomposition
- Exercises
 - 3NF decomposition
 - BCNF decomposition

FDs and a Relation Schema Key

- Each relation schema key is the consequence of a functional dependency from F⁺
- Let R (A₁,...., A_n) be a relation schema and F the set of functional dependencies in R
- Set of attributes $X \subseteq R$ is a relation schema key if

 $1^{\circ} X \rightarrow R \in F^{+} (\text{or } X^{+} = R)$ $2^{\circ} (\forall Y \subset X)(Y \rightarrow R \notin F^{+})$

- Not null condition still applies to X
- A prime attribute is a relation schema attribute that belongs to any of the keys
- Primary key is one of the keys

Lossless Join Decomposition

A decomposition D = {R₁, R₂, R_m} of a relation R has the lossless (nonadditive) join property wrt the set of dependencies F on R if, for every relation r(R) that satisfies F,

* $(\pi_{R1}r(R), \dots, \pi_{Rm}r(R)) = r(R)$

where * is the natural join of all the relations in D.

• It is proven in the theory of the relational data model that the decomposition of a relation schema R onto R_1 and R_2 is *lossless (non-additive)* if the intersection $R_1 \cap R_2$ contains a **key** of R_1 or a key of R_2

Victoria

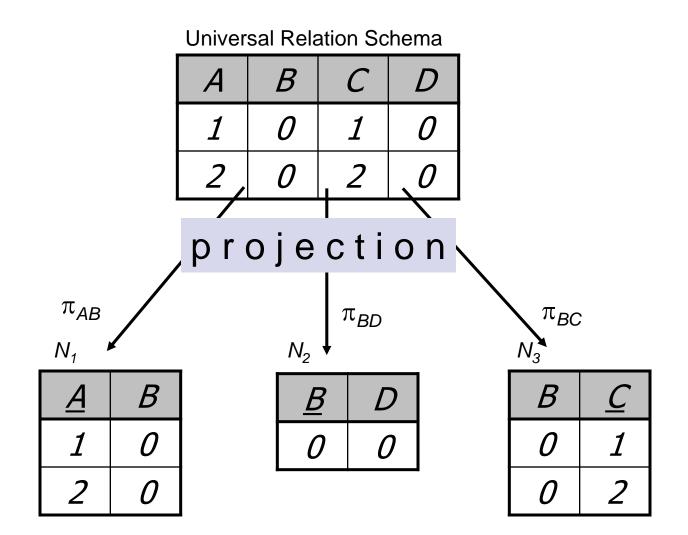
Example 1: Checking Losslessness of D (1)

- Given a set of relation schemas:
- $\mathsf{D} = \{N_1(\{A, B\}, \{A\}), N_2(\{B, D\}, \{B\}), N_3(\{C, B\}, \{C\})\}$
- How to check whether the whole set of relation schemas represents a lossless join decomposition of the (supposed) universal relation schema?

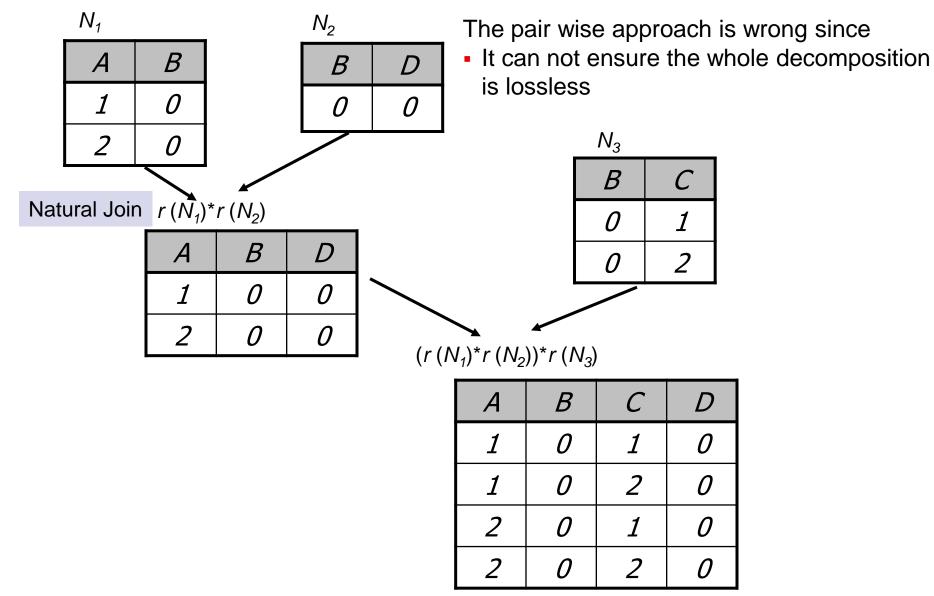
Example 1: Checking Losslessness of D (2)

- A naïve and generally wrong approach:
 - Perform a pair wise checking of the relation schemas
 - for each relation schema you find another one such that the intersection of the two schemas is a schema key of one of the schema
- So, according to that approach:
 - $\{A, B\} \cap \{B, D\} = \{B\}$, and *B* is the key of N_2
 - $\{B, C\} \cap \{B, D\} = \{B\}$, and *B* is the key of N_2
 - Conclusion (a wrong one): The set of relation schemas *D* is a lossless join decomposition (of a universal relation schema)

Example 1: Checking Losslessness of D (3)



Example 1: Checking Losslessness of D (4)



Te Whare Wänanga te Üpoko o te Ika a Män

Example 1: Checking Losslessness of D (5)

$\mathsf{D} = \{N_1(\{A, B\}, \{A\}), N_2(\{B, D\}, \{B\}), N_3(\{C, B\}, \{C\})\}$

- A correct approach is to apply this checking iteratively until all the schemas are considered
 - $\{A, B\} \cap \{B, D\} = \{B\}$, and *B* is the key of N_{2}
 - construct new relation schema $N_{12}(R_{12}, \text{Key}(N_{12}))$, with $R_{12} = \{A, B\} \cup \{B, D\} = \{A, B, D\}$ and $\text{Key}(N_{12}) = \{A\}$
 - $\{A, B, D\} \cap \{B, C\} = \{B\}$, and check again.
 - *B* is neither a key of N_{12} nor a key of N_3
- We can conclude the set of relation schemas D is a not a lossless join decomposition (of a universal relation schema).

One Approach of Checking Losslessness of D

- To check whether a set *D* of relation schemas is a lossless decomposition is:
 - 1. Construct a relation schema (U, F), where

$$U = \bigcup_{i=1}^{n} R_i$$
 and $F = \bigcup_{i=1}^{n} F_i$

- 2. Find all keys $\{X_i \mid i = 1, ..., m\}$ of the constructed "universal" relation schema (U, F)
- 3. If there is a relation schema N(R, K) in D that contains a key of the constructed relation schema (U, F), then D is a lossless join decomposition
- Otherwise, add a new relation schema that contains only a key X_i of the constructed "universal" relation schema (U, F) to D

$$D = D \cup \{N_{X}(X_{ii} X_{ij})\}$$

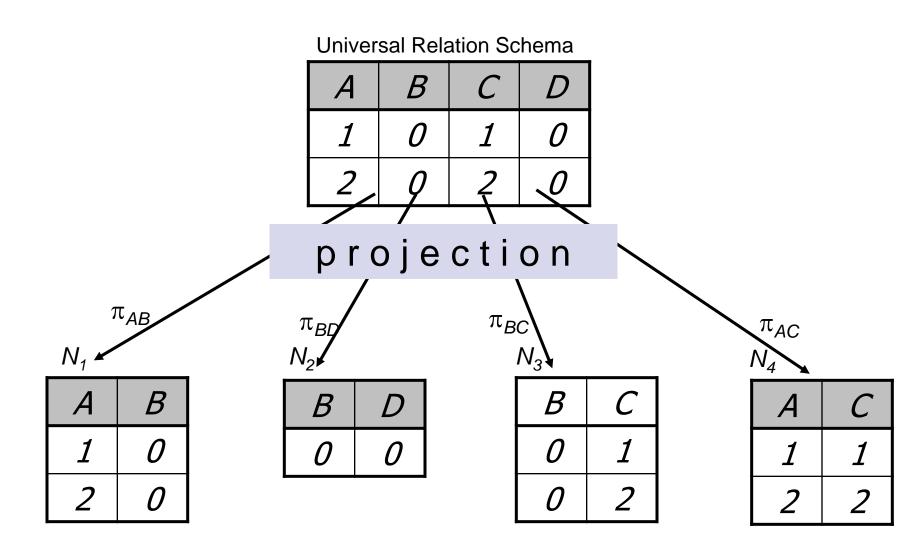
Victoria

Example 2: Checking Losslessness of D

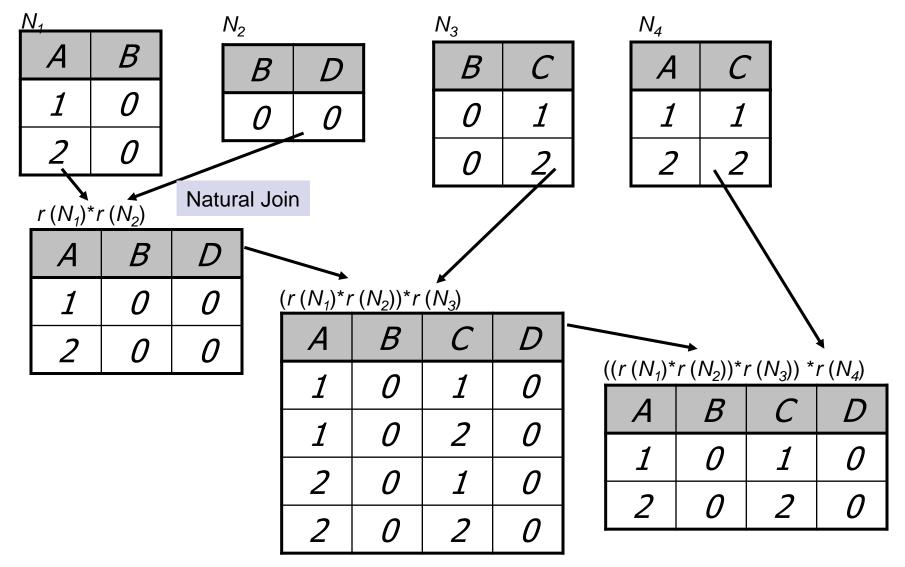
- The universal relation schema key is AC, and decompositions
 D = {N₁({A, B}, {A}), N₂({B, D}, {B}), N₃({B, C}, {C}))}
 Is the decomposition lossless? Why?
- No, since none of them contains schema key AC

- A lossless decomposition
 - $D' = \{N_{1}(\{A, B\}, \{A\}), N_{2}(\{B, D\}, \{B\}), N_{3}(\{B, C\}, \{C\}), N_{4}(\{A, C\}, \{AC\})\}$
- This can be achieved using the Synthesis Algorithm

Example 2: Checking Losslessness of D (3)



Example 2: Checking Losslessness of D (4)



UNIVERSITY OF WELLINGTO Te Whare Wänanga o te Üpoko o te Ika a Mäu

Exercise 1: Lossless Join Decomposition

- Consider the following relation schema again
 Department ({LecId, LeName, CourId, CoName, DptId }, {LecId → LeName + CourId, CourId → CoName + DptId })
- a) Is Department in 3NF? If not, decompose it into 3NF
- b) Is Department in BCNF? If not, decompose it into BCNF

Exercise 1: 3NF Decomposition

- a) Consider the following relation schema $Department (\{LecId, LeName, CourId, CoName, DptId\}, \{LecId \rightarrow LeName + CourId, CourId \rightarrow CoName + DptId\})$
- 1. Compute minimal cover of *F* $G = \{LecId \rightarrow LeName, LecId \rightarrow CourId, CourId \rightarrow CoName, CourId \rightarrow DptId \}$
- 2. Group FDs according to LHS and form relation schemas LecId \rightarrow LeName , LecId \rightarrow CourId, CourId \rightarrow CoName, CourId \rightarrow DptId

Lecturer ({LecId, LeName, CourId }, {LecId }) Course ({CourId, CoName, DptId }, {CourId })

Exercise 1: 3NF Decomposition

- 3. Compute universal relation keys and check if any of the relation schemas contains one of the keys:
 - *LecId* is the universal relation schema key and is in Lecturer

Department is decomposed into:

Lecturer ({LecId, LeName, CourId }, {LecId }) Course ({CourId, CoName, DptId }, {CourId })

All functional dependencies are preserved

Exercise 1: BCNF Decomposition

- b) Consider the following relation schema Department ({LecId, LeName, CourId, CoName, DptId}, {LecId →LeName + CourId, CourId →CoName + DptId}) Is Department in BCNF?
- Is decomposed into BCNF using CourId → CoName + DptId
 Lecturer ({LecId, LeName, CourId}, {LecId}) with {LecId
 →LeName + CourId}

Course ({CourId, CoName, DptId}, {CourId}) with {CourId} \rightarrow CoName + DptId}

- Both *Lecturer* and *Course* are in BCNF
- All the FDs are preserved

- Let *R* = *ABCD* a relation schema and
 F = {*AB* → *C*, *C* → *D*, *D* → *A*} a set of dependencies for *R*.
- 1) Find the candidate keys for *R*
- 2) If *R* is not in BCNF, give a decomposition of *R* in relations that will be in BCNF

- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 1) Find the candidate keys for *R*
- $A^+ = A$, $B^+ = B C^+ = CDA$, $D^+ = DA$,
- $AB^+ = ABCD = R = ABC^+ = ABD^+ = ABCD^+,$
- $AC^+ = ACD$

Victoria

- $AD^+ = AD$
- $BC^+ = BCDA = R^- BCD^+$
- $BD^+ = BDAC = R$
- $CD^+ = CDA$
- $ACD^+ = ACD$

AB, BC, and BD are scheme keys

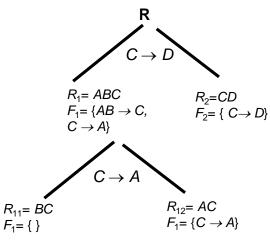
- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 2) If *R* is not in BCNF, give a decomposition of *R* in relations that will be in BCNF

R is not in BCNF because there are FDS, $C \rightarrow D$ and $D \rightarrow A$, of which the *LHS* is not a superkey.

Decompose *R* using $C \rightarrow D$ into $R_1 = ABC$ with $F_1 = {AB \rightarrow C, C \rightarrow A}, R_2 = CD$ with $F_2 = {C \rightarrow D}$.

 R_2 is in BCNF but R_1 is not yet in BCNF because there is FD $C \rightarrow A_r$ of which the *LHS* is not a super key.

Decompose R_1 along $C \rightarrow A$, R_1 is decomposed into $R_{11} = BC$ with $F_{11} = \{\}$, and $R_{12} = CA$ with $F_{12} = \{C \rightarrow A\}$. Both R_{11} and R_{12} are in BCNF



Victoria

- Let R = ABCD a relation schema and $F = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$ a set of dependencies for R.
- 2) If *R* is not in BCNF, give a decomposition of *R* in relations that will be in BCNF

R is decomposed into $R_{11}(\{B,C\},\{B+C\}), R_{12}(\{C,A\},\{C\}), R_{2}(\{C,D\},\{C\})$

 $F' = F_{11} \cup F_{12} \cup F_2 = \{C \to A, C \to D\}$

Functional dependencies $AB \rightarrow C$ and $D \rightarrow A$ are lost during the decomposition, because based on F' $D^+|_{F'} = D$ and $A \notin D^+$ $AB^+|_{F'} = AB$ and $C \notin AB^+$

Victoria

- Let R=JKL a relation and F = {JK → L, L → K} a set of dependencies for R.
- 1) Find two candidate keys in *R*
- 2) Is *R* in 3NF? Justify your answer
- 3) If *R* is not in BCNF, decompose *R* into BCNF
- 4) Are the functional dependencies preserved during the decomposition?

Let R=JKL a relation and $F = \{JK \rightarrow L, L \rightarrow K\}$ a set of dependencies for R.

1) Find two candidate keys in *R*

JK and JL are the keys, since $JK^+ = JKL = R$, and $JL^+ = JLK = R$

2) Is *R* in 3NF? Justify your answer Yes, it is, since all FDs in *F*, either their *LHS* is a superkey or *RHS* is a prime attribute.

Victoria UNIVERSITY OF WELLINGTON TE Whare Wänanga o te Opoko o te Ika a Mäui

Exercise 3: Find Keys and Normalization

• Let R=JKL a relation and $F = \{JK \rightarrow L, L \rightarrow K\}$ a set of dependencies for R.

3) If *R* is not in BCNF, decompose *R* into BCNF *R* is not in BCNF because there is a FD $L \rightarrow K$ of which the LHS is not a super key

Using $L \to K$, R is decomposed into $R_1 = JL$ with $F_1 = \{\}$ and $R_2 = LK$ with $F_2 = \{L \to K\}$ Both R_1 and R_2 is in BCNF since for each of them all FDs having LHS as a super key of R_i Hence, R is decomposed into $R_1(\{J,L\}, \{J+I\}), R_2(\{L,K\}, \{L\})$

• Let R=JKL a relation and $F = \{JK \rightarrow L, L \rightarrow K\}$ a set of dependencies for R.

4) Not all the functional dependencies preserved during the decomposition.

 $JK \rightarrow L$ is lost since using $F_1 \cup F_2$, $JK|_{F_1 \cup F_2}^+ = JK$ and $L \notin JK^+$